Given that $\sin \theta + \cos \theta = x$, prove that $\sin^4 \theta + \cos^4 \theta = \dfrac{2 - (x^2 - 1)^2}{2}$.
The velocity-time graph of an object moving along a straight line is shown in the figure. What is the distance covered by the object between \( t = 0 \) to \( t = 4s \)?
A bob of mass \(m\) is suspended at a point \(O\) by a light string of length \(l\) and left to perform vertical motion (circular) as shown in the figure. Initially, by applying horizontal velocity \(v_0\) at the point ‘A’, the string becomes slack when the bob reaches at the point ‘D’. The ratio of the kinetic energy of the bob at the points B and C is:
Various trigonometric identities are as follows:
Cosecant and Secant are even functions, all the others are odd.
T-Ratios of (2x)
sin2x = 2sin x cos x
cos 2x = cos2x – sin2x
= 2cos2x – 1
= 1 – 2sin2x
T-Ratios of (3x)
sin 3x = 3sinx – 4sin3x
cos 3x = 4cos3x – 3cosx