We are tasked with evaluating the integral:
\[
\int \frac{1}{\sin^2 2x \cdot \cos^2 2x} \, dx
\]
Step 1: Use trigonometric identity
We can start by simplifying the integrand using the identity:
\[
\sin^2 A \cdot \cos^2 A = \frac{1}{4} \sin^2 2A
\]
Using this identity, we rewrite the integral:
\[
\int \frac{1}{\sin^2 2x \cdot \cos^2 2x} \, dx = \int \frac{4}{\sin^2 4x} \, dx
\]
Step 2: Express in terms of \( \cot \)
We now recognize that \( \frac{1}{\sin^2 A} \) can be rewritten as \( \cot^2 A \), so the integral becomes:
\[
\int 4 \cdot \cot^2 4x \, dx
\]
Step 3: Use standard integral formula
We use the standard integral formula for \( \cot^2 x \):
\[
\int \cot^2 x \, dx = \int (\csc^2 x - 1) \, dx
\]
This simplifies to:
\[
\int 4 \cdot (\csc^2 4x - 1) \, dx
\]
Step 4: Solve the integral
Breaking it into two integrals, we have:
\[
4 \int \csc^2 4x \, dx - 4 \int 1 \, dx
\]
The integral of \( \csc^2 x \) is \( -\cot x \), so:
\[
4 \left( -\frac{1}{4} \cot 4x \right) - 4x = -\cot 4x - 4x
\]
Thus, the solution to the integral is:
\[
\boxed{-\cot 4x - 4x}
\]