For problems involving expected values, carefully consider the probabilities of each outcome and use the formula for expectation: E(X) = xP(X = x)
The given mean is expressed as:
\( \text{Mean} = 1 \cdot \frac{n-1}{n} + 2 \cdot \frac{1}{n} \cdot \frac{n-1}{n} + 3 \cdot \left( \frac{1}{n} \right)^2 \cdot \left( \frac{n-1}{n} \right) + \dots \)
Simplify the series:
\( \frac{n}{9} = \frac{n-1}{n} \left( 1 + 2 \cdot \frac{1}{n} + 3 \cdot \left( \frac{1}{n} \right)^2 + \dots \right) \)
The infinite series inside the parentheses is a geometric series:
\( 1 + 2 \cdot \frac{1}{n} + 3 \cdot \left( \frac{1}{n} \right)^2 + \dots \)
Using the sum formula for such series:
\( \frac{n}{9} = \frac{n-1}{n} \cdot \left( 1 - \frac{1}{n} \right)^{-2} \)
Simplify further:
\( \frac{n}{9} = \frac{n-1}{n} \cdot \frac{n^2}{(n-1)^2} \)
Multiply through:
\( \frac{n}{9} = \frac{n}{n-1} \)
Solve for \( n \):
\( n - 1 = 9 \Rightarrow n = 10 \)
Find the mean deviation of the following data: 
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.