A dipeptide, “x”, on complete hydrolysis gives “y” and “z”; “y” on treatment with aqueous HNO$_2$, produces lactic acid. On the other hand, “z” on heating gives the following cyclic molecule. 
Based on the information given, the dipeptide X is:
To determine the dipeptide "x," we need to analyze the amino acids "y" and "z" obtained upon its hydrolysis:
Hence, based on the transformations and information given, the dipeptide "x" is identified as alanine-glycine.
Let’s break down the key information provided:
1. Hydrolysis of “x”:
- The dipeptide "x" undergoes complete hydrolysis to produce two amino acids: y and z.
- y is a compound that, when treated with aqueous HNO\(_2\), produces lactic acid. This strongly suggests that y is glycine, as glycine reacts with nitrous acid to form lactic acid.
Therefore, glycine must be one of the products after hydrolysis.
2. Heating of “z”:
- z on heating forms a cyclic molecule. This strongly indicates that z is proline, as proline is an amino acid that can form a cyclic structure under heating conditions.
3. Identifying the Dipeptide:
- The dipeptide must be one that hydrolyzes to give glycine (which produces lactic acid upon treatment with HNO\(_2\)) and proline (which forms a cyclic structure upon heating).
- The only dipeptide in the given options that fits this pattern is alanine-glycine (option 2), as alanine can undergo cyclization to form proline under heat.
Thus, the correct dipeptide x is alanine-glycine.
Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):
