We begin with the more accurate expression for the dissociation of a weak acid:
$$ K_a = \frac{Cx^2}{1 - x} $$ where $ C $ is the initial concentration of the acid, and $ x $ is the degree of dissociation.
The hydrogen ion concentration is given by:
$$ [H^+] = Cx $$ So, $$ pH = -\log(Cx) $$
Similarly, the $ pK_a $ is defined as:
$$ pK_a = -\log(K_a) = -\log\left(\frac{Cx^2}{1 - x}\right) $$
Now, we calculate $ pH - pK_a $:
$$ pH - pK_a = -\log(Cx) + \log\left(\frac{Cx^2}{1 - x}\right) = \log\left(\frac{Cx^2}{Cx(1 - x)}\right) = \log\left(\frac{x}{1 - x}\right) $$
This gives us the general relation:
$$ pH - pK_a = \log\left(\frac{x}{1 - x}\right) $$
If $ pH = pK_a $, then:
$$ \log\left(\frac{x}{1 - x}\right) = 0 \Rightarrow \frac{x}{1 - x} = 1 \Rightarrow x = 1 - x \Rightarrow 2x = 1 \Rightarrow x = \frac{1}{2} $$
Thus, when the degree of dissociation $ x = 0.5 $, the pH equals the $ pK_a $, which corresponds to the midpoint of the titration curve.
Final Answer:
The correct expression for $ pH - pK_a $ without approximation is:
$$ \ \log\left(\frac{x}{1 - x}\right) $$