For a coin placed on a rotating disc, the forces acting on it are the normal force \( N = mg \) and the frictional force \( f \) that provides the centripetal force:
\[ f = m \omega^2 r \]
Since the frictional force is given by:
\[ f = \mu N = \mu mg \]
Equating the centripetal force and the frictional force:
\[ \mu mg = m \omega^2 r \]
Simplifying for \( \omega \):
\[ \omega = \sqrt{\frac{\mu g}{r}} \]
Statement-1: \( \text{ClF}_3 \) has 3 possible structures.
Statement-2: \( \text{III} \) is the most stable structure due to least lone pair-bond pair (lp-bp) repulsion.
Which of the following options is correct?
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: