The induced emf in the coil is given by:
\[ \mathcal{E} = N \left( \frac{\Delta \phi}{t} \right) \]
Where:
\[ \Delta \phi = (\Delta B)A \]
Given:
\[ B_i = 5000 \, \text{T}, \quad B_f = 3000 \, \text{T} \] \[ d = 0.02 \, \text{m} \implies r = 0.01 \, \text{m} \]
Calculating the change in magnetic flux:
\[ \Delta \phi = (\Delta B)A = (2000)(\pi)(0.01)^2 = 0.2\pi \]
Substituting values into the emf equation:
\[ \mathcal{E} = N \left( \frac{0.2\pi}{2} \right) \]
Given \( \mathcal{E} = 22 \, \text{V} \), we get:
\[ 22 = N \left( \frac{0.2\pi}{2} \right) \]
Solving for \( N \):
\[ N = 70 \]
Statement-1: \( \text{ClF}_3 \) has 3 possible structures.
Statement-2: \( \text{III} \) is the most stable structure due to least lone pair-bond pair (lp-bp) repulsion.
Which of the following options is correct?
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: