The induced emf in the coil is given by:
\[ \mathcal{E} = N \left( \frac{\Delta \phi}{t} \right) \]
Where:
\[ \Delta \phi = (\Delta B)A \]
Given:
\[ B_i = 5000 \, \text{T}, \quad B_f = 3000 \, \text{T} \] \[ d = 0.02 \, \text{m} \implies r = 0.01 \, \text{m} \]
Calculating the change in magnetic flux:
\[ \Delta \phi = (\Delta B)A = (2000)(\pi)(0.01)^2 = 0.2\pi \]
Substituting values into the emf equation:
\[ \mathcal{E} = N \left( \frac{0.2\pi}{2} \right) \]
Given \( \mathcal{E} = 22 \, \text{V} \), we get:
\[ 22 = N \left( \frac{0.2\pi}{2} \right) \]
Solving for \( N \):
\[ N = 70 \]
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: