At the highest point, the vertical component of the velocity becomes zero, and only the horizontal component \( u_x = u \cos 45^\circ = \frac{u}{\sqrt{2}} \) remains.
The maximum height \( h \) reached by the body is given by:
\[ h = \frac{(u \sin 45^\circ)^2}{2g} = \frac{\left(\frac{u}{\sqrt{2}}\right)^2}{2g} = \frac{u^2}{4g}. \]The angular momentum \( L \) about the point of projection at the highest point is:
\[ L = m \cdot u_x \cdot h = m \cdot \frac{u}{\sqrt{2}} \cdot \frac{u^2}{4g} = \frac{\sqrt{2}mu^3}{8g}. \]Thus, the value of \( X \) is:
\[ X = 8. \]
Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R):
Assertion (A): In an insulated container, a gas is adiabatically shrunk to half of its initial volume. The temperature of the gas decreases.
Reason (R): Free expansion of an ideal gas is an irreversible and an adiabatic process.
In the light of the above statements, choose the correct answer from the options given below:

Current passing through a wire as function of time is given as $I(t)=0.02 \mathrm{t}+0.01 \mathrm{~A}$. The charge that will flow through the wire from $t=1 \mathrm{~s}$ to $\mathrm{t}=2 \mathrm{~s}$ is: