At the highest point, the vertical component of the velocity becomes zero, and only the horizontal component \( u_x = u \cos 45^\circ = \frac{u}{\sqrt{2}} \) remains.
The maximum height \( h \) reached by the body is given by:
\[ h = \frac{(u \sin 45^\circ)^2}{2g} = \frac{\left(\frac{u}{\sqrt{2}}\right)^2}{2g} = \frac{u^2}{4g}. \]The angular momentum \( L \) about the point of projection at the highest point is:
\[ L = m \cdot u_x \cdot h = m \cdot \frac{u}{\sqrt{2}} \cdot \frac{u^2}{4g} = \frac{\sqrt{2}mu^3}{8g}. \]Thus, the value of \( X \) is:
\[ X = 8. \]Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: