At the highest point, the vertical component of the velocity becomes zero, and only the horizontal component \( u_x = u \cos 45^\circ = \frac{u}{\sqrt{2}} \) remains.
The maximum height \( h \) reached by the body is given by:
\[ h = \frac{(u \sin 45^\circ)^2}{2g} = \frac{\left(\frac{u}{\sqrt{2}}\right)^2}{2g} = \frac{u^2}{4g}. \]The angular momentum \( L \) about the point of projection at the highest point is:
\[ L = m \cdot u_x \cdot h = m \cdot \frac{u}{\sqrt{2}} \cdot \frac{u^2}{4g} = \frac{\sqrt{2}mu^3}{8g}. \]Thus, the value of \( X \) is:
\[ X = 8. \]Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.