At the highest point, the vertical component of the velocity becomes zero, and only the horizontal component \( u_x = u \cos 45^\circ = \frac{u}{\sqrt{2}} \) remains.
The maximum height \( h \) reached by the body is given by:
\[ h = \frac{(u \sin 45^\circ)^2}{2g} = \frac{\left(\frac{u}{\sqrt{2}}\right)^2}{2g} = \frac{u^2}{4g}. \]The angular momentum \( L \) about the point of projection at the highest point is:
\[ L = m \cdot u_x \cdot h = m \cdot \frac{u}{\sqrt{2}} \cdot \frac{u^2}{4g} = \frac{\sqrt{2}mu^3}{8g}. \]Thus, the value of \( X \) is:
\[ X = 8. \]In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.