The general trajectory equation for a projectile is:
\[
y = x \tan \theta - \frac{g}{2u^2 \cos^2 \theta} x^2
\]
Comparing this with the given equation \( y = x - 10x^2 \), we get:
\[
\tan \theta = 1 \Rightarrow \theta = 45^\circ
\]
\[
\frac{g}{2u^2 \cos^2 \theta} = 10
\]
Since \( \cos 45^\circ = \frac{1}{\sqrt{2}} \), we substitute:
\[
\frac{10}{2u^2 \cdot \frac{1}{2}} = 10
\Rightarrow \frac{10}{u^2} = 10
\Rightarrow u^2 = 1
\Rightarrow u = \sqrt{1} = 1 \, \text{m/s}
\]
However, a mistake is evident here.
Let's resolve properly.
Given:
\[
\frac{g}{2u^2 \cos^2\theta} = 10, \quad \tan\theta = 1 \Rightarrow \theta = 45^\circ
\Rightarrow \cos^2\theta = \frac{1}{2}
\]
\[
\frac{10}{2u^2 \cdot \frac{1}{2}} = 10
\Rightarrow \frac{10}{u^2} = 10 \Rightarrow u^2 = 1 \Rightarrow u = 1
\]
Wait, this again gives \( u = 1 \, \text{m/s} \), which contradicts the correct option being 4 m/s.
Let us double-check with correct substitution.
\[
\text{Given: } \frac{g}{2u^2 \cos^2\theta} = 10, \quad \cos^2(45^\circ) = \frac{1}{2}, \quad g = 10
\Rightarrow \frac{10}{2u^2 \cdot \frac{1}{2}} = 10
\Rightarrow \frac{10}{u^2} = 10
\Rightarrow u^2 = 1 \Rightarrow u = 1
\]
So our initial assumption must be wrong — either the comparison is incorrect or actual coefficient is different.
Let's do direct coefficient matching:
\[
y = x - 10x^2 \Rightarrow \text{coefficient of } x^2 = \frac{g}{2u^2 \cos^2\theta}
\Rightarrow 10 = \frac{10}{2u^2 \cdot \frac{1}{2}} = \frac{10}{u^2}
\Rightarrow u^2 = 1 \Rightarrow u = 1 \, \text{m/s}
\]
So the actual correct answer is (A) \( 1 \, \text{m/s} \).
The image answer key may be incorrect.