Step 1: Resolve initial velocity
\[
u = 270\, \text{m/s}, \quad \theta = 60^\circ
\Rightarrow u_x = u \cos \theta = 270 \cdot \frac{1}{2} = 135\, \text{m/s}
\]
Step 2: Equation of motion under linear drag force
The drag force is proportional to velocity:
\[
F = -CV \Rightarrow a = \frac{dv}{dt} = -C v
\Rightarrow \frac{dv}{v} = -C dt
\]
Integrate:
\[
\int_{u_x}^{v_x} \frac{dv}{v} = -C \int_{0}^{t} dt
\Rightarrow \ln \left( \frac{v_x}{u_x} \right) = -Ct
\Rightarrow v_x = u_x e^{-Ct}
\]
To find horizontal displacement:
\[
x(t) = \int_0^t v_x dt = \int_0^t u_x e^{-Ct} dt
= \left[ \frac{u_x}{-C} e^{-Ct} \right]_0^t
= \frac{u_x}{C} \left(1 - e^{-Ct} \right)
\]
Substitute values:
\[
u_x = 135, \quad C = 0.1, \quad t = 2
\Rightarrow x = \frac{135}{0.1} \left(1 - e^{-0.2} \right)
= 1350 \left(1 - e^{-0.2} \right)
\]
Use: \(e^{-0.2} \approx 0.8187\)
\[
x \approx 1350 (1 - 0.8187) = 1350 \times 0.1813 \approx 244 \, \text{m}
\]
Rounded value: \(\boxed{243\, \text{m}}\)