A body of mass $10 kg$ is moving with an initial speed of $20 m / s$ The body stops after $5 s$ due to friction between body and the floor The value of the coefficient of friction is: (Take acceleration due to gravity $g =10 ms ^{-2}$ )
\(a=-\mu g\)
\(\because v=u+at\)
\(0=20+(\mu\times10)\times5\)
\(50\mu=20\)
\(\mu=\frac{2}{5}\)
=0.4
Therefore , the value of coefficient of friction is 0.4
So , the correct option is (B) : 0.4
The work done by the frictional force is equal to the change in kinetic energy.
The frictional force \( f = \mu \times N = \mu \times mg \), where \( \mu \) is the coefficient of friction, \( m \) is the mass, and \( g \) is the acceleration due to gravity.
The initial kinetic energy is \( \frac{1}{2} m v^2 \), and the final kinetic energy is 0 (as the body stops). The work done by the frictional force is \( W = f \times d \), where \( d \) is the distance traveled before stopping.
From the equation of motion \( v_f = v_i + a t \), with \( v_f = 0 \), \( v_i = 20 \, \text{m/s} \), and \( t = 5 \, \text{s} \), we can find the acceleration \( a = \frac{v_f - v_i}{t} = \frac{0 - 20}{5} = -4 \, \text{m/s}^2 \).
Using \( F = ma \), the frictional force is \( F = 10 \times (-4) = -40 \, \text{N} \).
Now, using \( F = \mu mg \), we get:
\[ \mu = \frac{40}{10 \times 10} = 0.4 \]
The velocity-time graph of an object moving along a straight line is shown in the figure. What is the distance covered by the object between \( t = 0 \) to \( t = 4s \)?
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Read More: Work and Energy