We can calculate the final concentration of the NaOH solution using the dilution formula: \[ C_1 V_1 + C_2 V_2 = C_f V_f \]
Where: - \( C_1 = 2 \, \text{M} \) (concentration of first solution), - \( V_1 = 20 \, \text{mL} \) (volume of first solution), - \( C_2 = 0.5 \, \text{M} \) (concentration of second solution), - \( V_2 = 400 \, \text{mL} \) (volume of second solution), - \( C_f \) is the final concentration, and - \( V_f = V_1 + V_2 = 20 + 400 = 420 \, \text{mL} \).
Now, substitute the values: \[ (2 \times 20) + (0.5 \times 400) = C_f \times 420 \] \[ 40 + 200 = C_f \times 420 \] \[ C_f = \frac{240}{420} = 0.571 \, \text{M} \]
Thus, the final concentration is approximately \( 0.57 \, \text{M} \), or \( 5.7 \times 10^{-2} \, \text{M} \).
A substance 'X' (1.5 g) dissolved in 150 g of a solvent 'Y' (molar mass = 300 g mol$^{-1}$) led to an elevation of the boiling point by 0.5 K. The relative lowering in the vapour pressure of the solvent 'Y' is $____________ \(\times 10^{-2}\). (nearest integer)
[Given : $K_{b}$ of the solvent = 5.0 K kg mol$^{-1}$]
Assume the solution to be dilute and no association or dissociation of X takes place in solution.
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 