We can calculate the final concentration of the NaOH solution using the dilution formula: \[ C_1 V_1 + C_2 V_2 = C_f V_f \]
Where: - \( C_1 = 2 \, \text{M} \) (concentration of first solution), - \( V_1 = 20 \, \text{mL} \) (volume of first solution), - \( C_2 = 0.5 \, \text{M} \) (concentration of second solution), - \( V_2 = 400 \, \text{mL} \) (volume of second solution), - \( C_f \) is the final concentration, and - \( V_f = V_1 + V_2 = 20 + 400 = 420 \, \text{mL} \).
Now, substitute the values: \[ (2 \times 20) + (0.5 \times 400) = C_f \times 420 \] \[ 40 + 200 = C_f \times 420 \] \[ C_f = \frac{240}{420} = 0.571 \, \text{M} \]
Thus, the final concentration is approximately \( 0.57 \, \text{M} \), or \( 5.7 \times 10^{-2} \, \text{M} \).

Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to: