When equal volumes are mixed, the molarity of each component will be halved.
Let’s calculate the value of \( Q \) for precipitation and compare it with \( K_{sp} \). For precipitation, we use the equation: \[ Q = [A^{1-}][Y^{1-}] \] Let’s calculate \( Q \) for each option: \[ Q = (1.8 \times 10^{-7}) \left( \frac{5 \times 10^{-4}}{2} \right)^2 \] This will give: \[ Q = (1.8 \times 10^{-7}) \times (2.5 \times 10^{-4})^2 = 1.8 \times 10^{-7} \times 6.25 \times 10^{-8} = 1.125 \times 10^{-14} \] We can see that the value of \( Q \) for this combination is smaller than \( K_{sp} \), indicating that a precipitate will form. Now let’s check the other combinations for comparison: \[ Q = (10^{-7}) \left( \frac{0.4 \times 10^{-3}}{2} \right)^2 \] \[ Q = (10^{-7}) \times (0.2 \times 10^{-3})^2 = 10^{-7} \times 4 \times 10^{-8} = 4 \times 10^{-15} \] Again, this \( Q \) value is smaller than \( K_{sp} \), indicating no precipitate.
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: