When equal volumes are mixed, the molarity of each component will be halved.
Let’s calculate the value of \( Q \) for precipitation and compare it with \( K_{sp} \). For precipitation, we use the equation: \[ Q = [A^{1-}][Y^{1-}] \] Let’s calculate \( Q \) for each option: \[ Q = (1.8 \times 10^{-7}) \left( \frac{5 \times 10^{-4}}{2} \right)^2 \] This will give: \[ Q = (1.8 \times 10^{-7}) \times (2.5 \times 10^{-4})^2 = 1.8 \times 10^{-7} \times 6.25 \times 10^{-8} = 1.125 \times 10^{-14} \] We can see that the value of \( Q \) for this combination is smaller than \( K_{sp} \), indicating that a precipitate will form. Now let’s check the other combinations for comparison: \[ Q = (10^{-7}) \left( \frac{0.4 \times 10^{-3}}{2} \right)^2 \] \[ Q = (10^{-7}) \times (0.2 \times 10^{-3})^2 = 10^{-7} \times 4 \times 10^{-8} = 4 \times 10^{-15} \] Again, this \( Q \) value is smaller than \( K_{sp} \), indicating no precipitate.