$\Delta T_b = i_1 m_1 k_b + i_2 m_2 k_b$
$\Delta T_b = 1 \times \frac{2}{0.5} \times 0.52 + 1 \times \frac{2}{0.5} \times 0.52 = 4.16$
$(T_b)_{\text{solution}} = 373.16 + 4.16 = 377.3 \text{ K}$
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: