$\Delta T_b = i_1 m_1 k_b + i_2 m_2 k_b$
$\Delta T_b = 1 \times \frac{2}{0.5} \times 0.52 + 1 \times \frac{2}{0.5} \times 0.52 = 4.16$
$(T_b)_{\text{solution}} = 373.16 + 4.16 = 377.3 \text{ K}$
What is the molarity of a solution prepared by dissolving 5.85 g of NaCl in 500 mL of water?
(Molar mass of NaCl = 58.5 g/mol)
Let \( A = \{-3, -2, -1, 0, 1, 2, 3\} \). A relation \( R \) is defined such that \( xRy \) if \( y = \max(x, 1) \). The number of elements required to make it reflexive is \( l \), the number of elements required to make it symmetric is \( m \), and the number of elements in the relation \( R \) is \( n \). Then the value of \( l + m + n \) is equal to: