This is a standard problem that can be solved efficiently using logarithmic differentiation.
Given equation: \( x^m y^n = (x+y)^{m+n} \).
Take the natural logarithm (ln) on both sides:
\[ \ln(x^m y^n) = \ln((x+y)^{m+n}) \]
Using logarithm properties:
\[ \ln(x^m) + \ln(y^n) = (m+n) \ln(x+y) \]
\[ m \ln(x) + n \ln(y) = (m+n) \ln(x+y) \]
Now, differentiate both sides with respect to x, remembering to use the chain rule for terms involving y.
\[ m \cdot \frac{1}{x} + n \cdot \frac{1}{y} \cdot \frac{dy}{dx} = (m+n) \cdot \frac{1}{x+y} \cdot \left(1 + \frac{dy}{dx}\right) \]
\[ \frac{m}{x} + \frac{n}{y} \frac{dy}{dx} = \frac{m+n}{x+y} + \frac{m+n}{x+y} \frac{dy}{dx} \]
Now, group the terms with \( \frac{dy}{dx} \) on one side and the other terms on the other side.
\[ \left(\frac{n}{y} - \frac{m+n}{x+y}\right) \frac{dy}{dx} = \frac{m+n}{x+y} - \frac{m}{x} \]
Find common denominators for the terms in the parentheses:
\[ \left(\frac{n(x+y) - y(m+n)}{y(x+y)}\right) \frac{dy}{dx} = \frac{x(m+n) - m(x+y)}{x(x+y)} \]
\[ \left(\frac{nx + ny - my - ny}{y(x+y)}\right) \frac{dy}{dx} = \frac{mx + nx - mx - my}{x(x+y)} \]
\[ \left(\frac{nx - my}{y(x+y)}\right) \frac{dy}{dx} = \frac{nx - my}{x(x+y)} \]
Assuming \( nx - my \neq 0 \), we can cancel this term from both sides. We can also cancel \( (x+y) \).
\[ \frac{1}{y} \frac{dy}{dx} = \frac{1}{x} \]
\[ \frac{dy}{dx} = \frac{y}{x} \]