The two key logarithm rules for this problem are the exponent rule for subtraction, \( a^{m-n} = a^m/a^n \), and the fundamental inverse property, \( a^{\log_a x} = x \). Applying these in order simplifies the expression directly.
We need to evaluate the expression \( 3^{3-\log_3 5} \).
Using the exponent rule \( a^{m-n} = \frac{a^m}{a^n} \), we can split the expression:
\[ 3^{3-\log_3 5} = \frac{3^3}{3^{\log_3 5}} \]
Now, we evaluate the numerator and the denominator separately.
Numerator: \( 3^3 = 27 \).
Denominator: We use the fundamental logarithm identity \( a^{\log_a x} = x \).
\[ 3^{\log_3 5} = 5 \]
Now substitute these values back into the fraction:
\[ \frac{27}{5} \]