This is a standard identity for inverse trigonometric functions. The range of the principal value of \( \cos^{-1}(x) \) is \( [0, \pi] \).
Let \( y = \cos^{-1}(-x) \). By definition, \( \cos(y) = -x \), where \( 0 \leq y \leq \pi \).
We know the trigonometric identity \( \cos(\pi - \theta) = -\cos(\theta) \).
Let \( \theta = \cos^{-1}(x) \). Then \( \cos(\theta) = x \).
So, \( -x = -\cos(\theta) = \cos(\pi - \theta) \).
Substituting this back into our first equation:
\[ \cos(y) = \cos(\pi - \theta) \]
\[ y = \pi - \theta \]
Substitute back \( \theta = \cos^{-1}(x) \):
\[ y = \pi - \cos^{-1}(x) \]
Thus, \( \cos^{-1}(-x) = \pi - \cos^{-1}(x) \).