If \( D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2+x & 1 \\ 1 & 1 & 2+y \end{vmatrix} \) for \( x \neq 0, y \neq 0 \), then D is
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
If \( x, y, z \) \(\text{ are the three cube roots of 27, then the determinant of the matrix}\) \[ \begin{pmatrix} x & y & z \\ y & z & x \\ z & x & y \end{pmatrix} \] \(\text{is:}\)
Let the matrix $ A = \begin{pmatrix} 1 & 0 & 0 \\1 & 0 & 1 \\0 & 1 & 0 \end{pmatrix} $ satisfy $ A^n = A^{n-2} + A^2 - I $ for $ n \geq 3 $. Then the sum of all the elements of $ A^{50} $ is: