Let there be two mid-points, C and D
C is the mid-point of AB.
AC = CB
AC +AC =BC+AC (Equals are added on both sides) … (1)
Here, (BC + AC) coincides with AB. It is known that things which coincide with one another are equal to one another.
∴ BC + AC = AB … (2)
It is also known that things which are equal to the same thing are equal to one another. Therefore, from equations (1) and (2), we obtain
AC + AC = AB
⇒ 2AC = AB … (3)
Similarly, by taking D as the mid-point of AB, it can be proved that
2AD = AB … (4)
From equation (3) and (4), we obtain
2AC = 2AD (Things which are equal to the same thing are equal to one another.)
⇒ AC = AD (Things which are double of the same things are equal to one another.)
This is possible only when point C and D are representing a single point.
Hence, our assumption is wrong and there can be only one mid-point of a given line segment.
In Fig. 5.10, if AC = BD, then prove that AB = CD.
Consider two ‘postulates’ given below :
(i) Given any two distinct points A and B, there exists a third point C which is in between A and B.
(ii) There exist at least three points that are not on the same line.
Do these postulates contain any undefined terms? Are these postulates consistent?
Do they follow from Euclid’s postulates? Explain.
Give a definition for each of the following terms. Are there other terms that need to be defined first? What are they, and how might you define them?
(i) parallel lines
(ii) perpendicular lines
(iii) line segment
(iv) radius of a circle
(v) square
In Fig. 9.26, A, B, C and D are four points on a circle. AC and BD intersect at a point E such that ∠ BEC = 130° and ∠ ECD = 20°. Find ∠ BAC.