Consider two ‘postulates’ given below :
(i) Given any two distinct points A and B, there exists a third point C which is in between A and B.
(ii) There exist at least three points that are not on the same line.
Do these postulates contain any undefined terms? Are these postulates consistent?
Do they follow from Euclid’s postulates? Explain.
There are various undefined terms in the given postulates. The given postulates are consistent because they refer to two different situations. Also, it is impossible to deduce any statement that contradicts any well known axiom and postulate.
These postulates do not follow from Euclid’s postulates. They follow from the axiom, “Given two distinct points, there is a unique line that passes through them”.
In Fig. 5.10, if AC = BD, then prove that AB = CD.
Give a definition for each of the following terms. Are there other terms that need to be defined first? What are they, and how might you define them?
(i) parallel lines
(ii) perpendicular lines
(iii) line segment
(iv) radius of a circle
(v) square
In Fig. 9.26, A, B, C and D are four points on a circle. AC and BD intersect at a point E such that ∠ BEC = 130° and ∠ ECD = 20°. Find ∠ BAC.