Step 1: Differentiate implicitly with respect to \( y \).
\[
x^2 + y^2 = 1
\]
\[
2x\frac{dx}{dy} + 2y = 0
\]
\[
\frac{dx}{dy} = -\frac{y}{x}
\]
Step 2: Differentiate again with respect to \( y \).
\[
\frac{d^2x}{dy^2}
= -\frac{d}{dy}\!\left(\frac{y}{x}\right)
\]
Using quotient rule,
\[
\frac{d^2x}{dy^2}
= -\frac{x(1)-y\frac{dx}{dy}}{x^2}
\]
Step 3: Substitute \( \frac{dx}{dy} = -\frac{y}{x} \).
\[
\frac{d^2x}{dy^2}
= -\frac{x+\frac{y^2}{x}}{x^2}
= -\frac{x^2+y^2}{x^3}
\]
Step 4: Use the given relation.
\[
x^2+y^2=1
\Rightarrow \frac{d^2x}{dy^2}=-\frac{1}{x^3}
\]
Step 5: Conclusion.
\[
\boxed{-\dfrac{1}{x^3}}
\]