Question:

If \( x^2 + y^2 = 1 \), then find \( \dfrac{d^2x}{dy^2} \).

Show Hint

For second derivatives in implicit relations, always substitute the original equation to simplify the final expression.
Updated On: Jan 30, 2026
  • \( x^3 \)
  • \( y^3 \)
  • \( -\dfrac{1}{x^3} \)
  • \( -y^3 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Differentiate implicitly with respect to \( y \).
\[ x^2 + y^2 = 1 \] \[ 2x\frac{dx}{dy} + 2y = 0 \] \[ \frac{dx}{dy} = -\frac{y}{x} \]

Step 2: Differentiate again with respect to \( y \).
\[ \frac{d^2x}{dy^2} = -\frac{d}{dy}\!\left(\frac{y}{x}\right) \] Using quotient rule, \[ \frac{d^2x}{dy^2} = -\frac{x(1)-y\frac{dx}{dy}}{x^2} \]

Step 3: Substitute \( \frac{dx}{dy} = -\frac{y}{x} \).
\[ \frac{d^2x}{dy^2} = -\frac{x+\frac{y^2}{x}}{x^2} = -\frac{x^2+y^2}{x^3} \]

Step 4: Use the given relation.
\[ x^2+y^2=1 \Rightarrow \frac{d^2x}{dy^2}=-\frac{1}{x^3} \]

Step 5: Conclusion.
\[ \boxed{-\dfrac{1}{x^3}} \]
Was this answer helpful?
0
0