Step 1: Solve the given trigonometric equation.
The given equation is:
\[
\tan \theta + \tan 2\theta = \tan 3\theta
\]
We use the tangent addition formula to simplify:
\[
\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}
\]
So, we first express \( \tan 3\theta \) as:
\[
\tan 3\theta = \frac{\tan \theta + \tan 2\theta}{1 - \tan \theta \tan 2\theta}
\]
Step 2: Analyze the solutions.
By solving this equation, we get:
\[
\theta = n\pi, n \in \mathbb{Z} \quad \text{or} \quad \theta = p \frac{\pi}{3}, p \in \mathbb{Z}
\]
Step 3: Conclusion.
Thus, the general solution is \( \theta = n\pi, n \in \mathbb{Z} \quad \text{or} \quad \theta = p \frac{\pi}{3}, p \in \mathbb{Z} \), corresponding to option (B).