Step 1: Simplify the integral.
We are given the integral:
\[
\int_{0}^{\frac{\pi}{4}} \frac{\sin x + \cos x}{9 + 16 \sin 2x} \, dx
\]
We know that \( \sin 2x = 2 \sin x \cos x \), so the denominator becomes:
\[
9 + 16 \sin 2x = 9 + 32 \sin x \cos x
\]
Thus, the integral simplifies to:
\[
\int_{0}^{\frac{\pi}{4}} \frac{\sin x + \cos x}{9 + 32 \sin x \cos x} \, dx
\]
Step 2: Solve the integral.
The integral is simplified and computed, giving the result \( k = \frac{1}{20} \), corresponding to option (B).