Step 1: Find the point on the curve.
At \( \theta = \frac{\pi}{4} \):
\[
x = 4\sec\frac{\pi}{4} = 4\sqrt{2},\qquad
y = 4\tan^2\frac{\pi}{4} = 4
\]
Step 2: Compute the slope of the tangent.
\[
\frac{dx}{d\theta} = 4\sec\theta\tan\theta,\qquad
\frac{dy}{d\theta} = 8\tan\theta\sec^2\theta
\]
\[
\Rightarrow \frac{dy}{dx}
= \frac{8\tan\theta\sec^2\theta}{4\sec\theta\tan\theta}
= 2\sec\theta
\]
At \( \theta=\frac{\pi}{4} \),
\[
m_{\text{tan}} = 2\sqrt{2}
\]
Step 3: Slope of the normal.
\[
m_{\text{normal}} = -\frac{1}{m_{\text{tan}}} = -\frac{1}{2\sqrt{2}}
\]
Step 4: Equation of the normal.
\[
y-4 = -\frac{1}{2\sqrt{2}}(x-4\sqrt{2})
\]
\[
\Rightarrow x + 2\sqrt{2}y = 12\sqrt{2}
\]
Step 5: Conclusion.
\[
\boxed{x + 2\sqrt{2}y = 12\sqrt{2}}
\]