Step 1: Formula for the cumulative distribution function (CDF).
The cumulative distribution function (CDF) is obtained by integrating the probability density function (PDF) from the lower limit of \( x \) to the variable \( x \). So, we integrate \( f(x) \):
\[
F(x) = \int_{-1}^{x} \frac{t^3}{3} \, dt
\]
Step 2: Perform the integration.
We compute the integral:
\[
F(x) = \frac{1}{3} \int_{-1}^{x} t^3 \, dt = \frac{1}{3} \cdot \frac{x^4}{4} - \frac{1}{3} \cdot \frac{(-1)^4}{4} = \frac{1}{12} \left( x^4 - 1 \right)
\]
Step 3: Conclusion.
Thus, the cumulative distribution function is \( F(x) = \frac{1}{12} \left( x^4 - 1 \right) \), corresponding to option (D).