>
Mathematics
List of top Mathematics Questions
Evaluate:
∫
0
2
π
s
i
n
(
π
4
+
x
2
)
d
x
\int\limits_{0}^{2\pi} sin\left(\frac{\pi}{4}+\frac{x}{2}\right)dx
0
∫
2
π
s
in
(
4
π
+
2
x
)
d
x
Mathematics
integral
Evaluate :
∫
1
s
i
n
x
+
3
c
o
s
x
d
x
\int\frac{1}{sin \,x +\sqrt{3} \,cos\, x} dx
∫
s
in
x
+
3
cos
x
1
d
x
Mathematics
integral
Evaluate
2
c
o
s
22
1
∘
2
⋅
c
o
s
67
1
∘
2
2\,cos\,22 \frac{1^{\circ}}{2}\cdot cos\,67 \frac{1^{\circ}}{2}
2
cos
22
2
1
∘
⋅
cos
67
2
1
∘
.
Mathematics
Trigonometric Functions
Evaluate
(
i
)
5
!
(
i
i
)
7
!
(i) 5! (ii) 7!
(
i
)
5
!
(
ii
)
7
!
Mathematics
permutations and combinations
Equation of
Y
O
Z
YOZ
Y
OZ
plane is
Mathematics
introduction to three dimensional geometry
Equation of the vertical line passing through the point (-4,5) is
Mathematics
Straight lines
Equation of a line passing through
(
1
,
2
,
−
3
)
(1, 2, -3)
(
1
,
2
,
−
3
)
and parallel to the line
x
−
2
1
=
y
+
1
3
=
z
−
1
4
\frac{x-2}{1}=\frac{y+1}{3}=\frac{z-1}{4}
1
x
−
2
=
3
y
+
1
=
4
z
−
1
is
Mathematics
Three Dimensional Geometry
Equation of the hyperbola with eccentricity
3
2
\frac{3}{2}
2
3
and foci at
(
?
2
,
0
)
(?2 ,0)
(
?
2
,
0
)
is
Mathematics
Conic sections
Eight coins are thrown simultaneously. Find the probability of getting atleast
6
6
6
heads.
Mathematics
Conditional Probability
Eight coins are thrown simultaneously. What is the probability of getting atleast
3
3
3
heads?
Mathematics
Conditional Probability
Each diagonal element of a skew-symmetric matrix is
Mathematics
Matrices
d
y
d
x
=
4
x
+
2
y
+
1
x
−
2
y
+
3
\frac{dy}{dx} = \frac{4x + 2y + 1}{ x -2y + 3}
d
x
d
y
=
x
−
2
y
+
3
4
x
+
2
y
+
1
is a differential equation of the type
Mathematics
Differential equations
Domain of
c
o
s
−
1
[
x
]
cos^{-1}\, [x]
co
s
−
1
[
x
]
is
Mathematics
Inverse Trigonometric Functions
lim
x
→
π
2
1
−
sin
x
cos
x
\displaystyle\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin \, x}{\cos \, x}
x
→
2
π
lim
cos
x
1
−
sin
x
is equal to
Mathematics
limits and derivatives
lim
x
→
π
2
cos
x
x
−
π
2
\displaystyle\lim_{x\to \frac{\pi}{2}} \frac{\cos \, x}{ x - \frac{\pi}{2}}
x
→
2
π
lim
x
−
2
π
cos
x
equals:
Mathematics
limits and derivatives
lim
x
→
∞
(
2
x
−
3
)
(
3
x
−
4
)
(
4
x
−
5
)
(
5
x
−
6
)
\displaystyle\lim_{x \to \infty} \frac{ (2x -3)(3x -4)}{(4x - 5)(5x - 6)}
x
→
∞
lim
(
4
x
−
5
)
(
5
x
−
6
)
(
2
x
−
3
)
(
3
x
−
4
)
is equal to:
Mathematics
limits and derivatives
lim
x
→
∞
(
x
100
e
x
+
(
c
o
s
2
x
)
x
2
)
=
\displaystyle \lim_{x\to\infty}\left(\frac{x^{100}}{e^{x}}+\left(cos \frac{2}{x}\right)^{x^2}\right) =
x
→
∞
lim
(
e
x
x
100
+
(
cos
x
2
)
x
2
)
=
Mathematics
limits and derivatives
lim
x
→
0
[
s
i
n
[
x
−
3
]
[
x
−
3
]
]
\displaystyle\lim_{x \to 0}\left[\frac{sin\left[x-3\right]}{\left[x-3\right]}\right]
x
→
0
lim
[
[
x
−
3
]
s
in
[
x
−
3
]
]
, where [ . ] denotes greatest integer function is
Mathematics
limits and derivatives
lim
x
→
1
\displaystyle \lim_{x \to 1}
x
→
1
lim
[
(
4
x
x
2
−
x
−
1
−
1
−
3
x
+
x
2
1
−
x
3
)
−
1
+
3
(
x
4
−
1
x
3
−
x
−
1
)
]
\left[\left(\frac{4x}{x^{2}-x^{-1}}-\frac{1-3x+x^{2}}{1-x^{3}}\right)^{-1}+3\left(\frac{x^{4}-1}{x^{3}-x^{-1}}\right)\right]
[
(
x
2
−
x
−
1
4
x
−
1
−
x
3
1
−
3
x
+
x
2
)
−
1
+
3
(
x
3
−
x
−
1
x
4
−
1
)
]
is
Mathematics
limits and derivatives
lim
n
→
∞
\displaystyle \lim_{n \to \infty}
n
→
∞
lim
(
1
n
2
+
3
n
2
+
5
n
2
+
.
.
.
.
.
+
2
n
+
1
n
2
)
\left(\frac{1}{n^{2}}+\frac{3}{n^{2}}+\frac{5}{n^{2}}+.....+\frac{2n+1}{n^{2}}\right)
(
n
2
1
+
n
2
3
+
n
2
5
+
.....
+
n
2
2
n
+
1
)
is equal to
Mathematics
limits and derivatives
lim
x
→
0
\displaystyle \lim_{x \to 0}
x
→
0
lim
1
−
c
o
s
m
x
1
−
c
o
s
n
x
=
\frac{1-cos\,mx}{1-cos\,nx}=
1
−
cos
n
x
1
−
cos
m
x
=
Mathematics
limits and derivatives
lim
x
→
0
\displaystyle \lim_{x \to 0}
x
→
0
lim
(
c
o
s
x
+
s
i
n
x
)
1
x
\left(cos\,x+sin\,x\right)^{\frac{1}{x}}
(
cos
x
+
s
in
x
)
x
1
equals
Mathematics
limits and derivatives
∫
1
/
2
2
∣
log
10
x
∣
d
x
=
\displaystyle\int_{1/2}^{2}|\log_{10}\,x|dx=
∫
1/2
2
∣
lo
g
10
x
∣
d
x
=
Mathematics
integral
lim
h
→
0
\displaystyle \lim_{h \to 0}
h
→
0
lim
(
a
+
h
2
)
s
i
n
(
a
+
h
)
−
a
2
s
i
n
a
h
=
\frac{\left(a+h^{2}\right)sin\left(a+h\right)-a^{2}\,sin\,a}{h}=
h
(
a
+
h
2
)
s
in
(
a
+
h
)
−
a
2
s
in
a
=
Mathematics
limits and derivatives
Differential coefficient of
s
e
c
x
\sqrt{sec\sqrt{x}}
sec
x
is
Mathematics
Continuity and differentiability
Prev
1
...
712
713
714
715
716
...
723
Next