Step 1: {Differentiate \( y = \cos^{-1}(\mathrm{e}^x) \)}
The derivative of \( \cos^{-1}(u) \) with respect to \( x \) is:
\[
\frac{d}{dx} \cos^{-1}(u) = \frac{-1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx}.
\]
Here, \( u = \mathrm{e}^x \), so:
\[
\frac{du}{dx} = \mathrm{e}^x.
\]
Step 2: {Substitute \( u = \mathrm{e}^x \)}
Using the formula:
\[
\frac{dy}{dx} = \frac{-1}{\sqrt{1 - (\mathrm{e}^x)^2}} \cdot \mathrm{e}^x.
\]
Step 3: {Simplify the denominator}
Simplify \( 1 - (\mathrm{e}^x)^2 \):
\[
1 - (\mathrm{e}^x)^2 = 1 - \mathrm{e}^{2x} = \mathrm{e}^{-2x} - 1.
\]
Thus,
\[
\frac{dy}{dx} = \frac{-1}{\sqrt{\mathrm{e}^{-2x} - 1}}.
\]