Step 1: Compute the determinant of matrix \( A \).
\[ |A| = \begin{vmatrix} 1 & \cos \theta & 1 \\ -\cos \theta & 1 & \cos \theta \\ -1 & -\cos \theta & 1 \end{vmatrix}. \]
Using cofactor expansion along the first row:
\[ |A| = 1 \cdot \begin{vmatrix} 1 & \cos \theta \\ -\cos \theta & 1 \end{vmatrix} - \cos \theta \cdot \begin{vmatrix} -\cos \theta & \cos \theta \\ -1 & 1 \end{vmatrix} + 1 \cdot \begin{vmatrix} -\cos \theta & 1 \\ -1 & -\cos \theta \end{vmatrix}. \]
1. Compute the first minor:
\[ \begin{vmatrix} 1 & \cos \theta \\ -\cos \theta & 1 \end{vmatrix} = (1)(1) - (-\cos \theta)(\cos \theta) = 1 + \cos^2 \theta. \]
2. Compute the second minor:
\[ \begin{vmatrix} -\cos \theta & \cos \theta \\ -1 & 1 \end{vmatrix} = (-\cos \theta)(1) - (\cos \theta)(-1) = -\cos \theta + \cos \theta = 0. \]
3. Compute the third minor:
\[ \begin{vmatrix} -\cos \theta & 1 \\ -1 & -\cos \theta \end{vmatrix} = (-\cos \theta)(-\cos \theta) - (1)(-1) = \cos^2 \theta + 1. \]
Substitute back into the determinant:
\[ |A| = 1 \cdot (1 + \cos^2 \theta) - \cos \theta \cdot 0 + 1 \cdot (1 + \cos^2 \theta). \]
Simplify:
\[ |A| = (1 + \cos^2 \theta) + (1 + \cos^2 \theta) = 2 + 2\cos^2 \theta. \]
Step 2: Determine the range of \(|A| \).
Since \(\cos \theta \in [-1, 1]\), we have:
\[ \cos^2 \theta \in [0, 1]. \]
Thus:
\[ |A| = 2 + 2\cos^2 \theta \in [2, 4]. \]
Verification of Assertion (A): The determinant \(|A|\) lies in the interval \([2, 4]\), so the assertion is true.
Verification of Reason (R): The cosine function satisfies \(\cos \theta \in [-1, 1]\) for all \(\theta \in [0, 2\pi]\), so the reason is also true.
Conclusion: Both Assertion (A) and Reason (R) are true, and the Reason (R) correctly explains the Assertion (A).
A settling chamber is used for the removal of discrete particulate matter from air with the following conditions. Horizontal velocity of air = 0.2 m/s; Temperature of air stream = 77°C; Specific gravity of particle to be removed = 2.65; Chamber length = 12 m; Chamber height = 2 m; Viscosity of air at 77°C = 2.1 × 10\(^{-5}\) kg/m·s; Acceleration due to gravity (g) = 9.81 m/s²; Density of air at 77°C = 1.0 kg/m³; Assume the density of water as 1000 kg/m³ and Laminar condition exists in the chamber.
The minimum size of particle that will be removed with 100% efficiency in the settling chamber (in $\mu$m is .......... (round off to one decimal place).
