Step 1: Compute the determinant of matrix \( A \).
\[ |A| = \begin{vmatrix} 1 & \cos \theta & 1 \\ -\cos \theta & 1 & \cos \theta \\ -1 & -\cos \theta & 1 \end{vmatrix}. \]
Using cofactor expansion along the first row:
\[ |A| = 1 \cdot \begin{vmatrix} 1 & \cos \theta \\ -\cos \theta & 1 \end{vmatrix} - \cos \theta \cdot \begin{vmatrix} -\cos \theta & \cos \theta \\ -1 & 1 \end{vmatrix} + 1 \cdot \begin{vmatrix} -\cos \theta & 1 \\ -1 & -\cos \theta \end{vmatrix}. \]
1. Compute the first minor:
\[ \begin{vmatrix} 1 & \cos \theta \\ -\cos \theta & 1 \end{vmatrix} = (1)(1) - (-\cos \theta)(\cos \theta) = 1 + \cos^2 \theta. \]
2. Compute the second minor:
\[ \begin{vmatrix} -\cos \theta & \cos \theta \\ -1 & 1 \end{vmatrix} = (-\cos \theta)(1) - (\cos \theta)(-1) = -\cos \theta + \cos \theta = 0. \]
3. Compute the third minor:
\[ \begin{vmatrix} -\cos \theta & 1 \\ -1 & -\cos \theta \end{vmatrix} = (-\cos \theta)(-\cos \theta) - (1)(-1) = \cos^2 \theta + 1. \]
Substitute back into the determinant:
\[ |A| = 1 \cdot (1 + \cos^2 \theta) - \cos \theta \cdot 0 + 1 \cdot (1 + \cos^2 \theta). \]
Simplify:
\[ |A| = (1 + \cos^2 \theta) + (1 + \cos^2 \theta) = 2 + 2\cos^2 \theta. \]
Step 2: Determine the range of \(|A| \).
Since \(\cos \theta \in [-1, 1]\), we have:
\[ \cos^2 \theta \in [0, 1]. \]
Thus:
\[ |A| = 2 + 2\cos^2 \theta \in [2, 4]. \]
Verification of Assertion (A): The determinant \(|A|\) lies in the interval \([2, 4]\), so the assertion is true.
Verification of Reason (R): The cosine function satisfies \(\cos \theta \in [-1, 1]\) for all \(\theta \in [0, 2\pi]\), so the reason is also true.
Conclusion: Both Assertion (A) and Reason (R) are true, and the Reason (R) correctly explains the Assertion (A).
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: