Step 1: Rewrite the system of equations.
Let \( a = \frac{1}{x}, \, b = \frac{1}{y}, \, c = \frac{1}{z} \). The given system of equations becomes:
\[
2a + 3b + 10c = 4, \quad
4a - 6b + 5c = 1, \quad
6a + 9b - 20c = 2.
\]
Step 2: Represent the system in matrix form.
The system can be written as:
\[
\begin{bmatrix}
2 & 3 & 10 \\
4 & -6 & 5 \\
6 & 9 & -20
\end{bmatrix}
\begin{bmatrix}
a \\ b \\ c
\end{bmatrix}
=
\begin{bmatrix}
4 \\ 1 \\ 2
\end{bmatrix}.
\]
Step 3: Compute the determinant of the coefficient matrix.
The coefficient matrix is:
\[
A =
\begin{bmatrix}
2 & 3 & 10 \\
4 & -6 & 5 \\
6 & 9 & -20
\end{bmatrix}.
\]
The determinant of \( A \) is:
\[
\text{Det}(A) =
\begin{vmatrix}
2 & 3 & 10 \\
4 & -6 & 5 \\
6 & 9 & -20
\end{vmatrix}.
\]
Expanding the determinant:
\[
\text{Det}(A) = 2 \begin{vmatrix}
-6 & 5 \\
9 & -20
\end{vmatrix}
- 3 \begin{vmatrix}
4 & 5 \\
6 & -20
\end{vmatrix}
+ 10 \begin{vmatrix}
4 & -6 \\
6 & 9
\end{vmatrix}.
\]
Step 4: Compute the minors.
Calculate each minor:
\[
\begin{vmatrix}
-6 & 5 \\
9 & -20
\end{vmatrix}
= (-6)(-20) - (5)(9) = 120 - 45 = 75,
\]
\[
\begin{vmatrix}
4 & 5 \\
6 & -20
\end{vmatrix}
= (4)(-20) - (5)(6) = -80 - 30 = -110,
\]
\[
\begin{vmatrix}
4 & -6 \\
6 & 9
\end{vmatrix}
= (4)(9) - (-6)(6) = 36 + 36 = 72.
\]
Substituting into the determinant:
\[
\text{Det}(A) = 2(75) - 3(-110) + 10(72) = 150 + 330 + 720 = 1200.
\]
Step 5: Compute the inverse of \( A \).
The inverse of \( A \) is:
\[
A^{-1} = \frac{1}{\text{Det}(A)} \text{Adj}(A),
\]
where \( \text{Adj}(A) \) is the adjugate matrix. After computation:
\[
A^{-1} = \frac{1}{1200}
\begin{bmatrix}
-270 & -210 & 120 \\
90 & 60 & 240 \\
-90 & 30 & 60
\end{bmatrix}.
\]
Step 6: Solve \( X = A^{-1}B \).
The solution is:
\[
X = \frac{1}{1200}
\begin{bmatrix}
-270 & -210 & 120 \\
90 & 60 & 240 \\
-90 & 30 & 60
\end{bmatrix}
\begin{bmatrix}
4 \\ 1 \\ 2
\end{bmatrix}.
\]
Performing the matrix multiplication:
\[
X = \frac{1}{1200}
\begin{bmatrix}
-1080 - 210 + 240 \\
360 + 60 + 480 \\
-360 + 30 + 120
\end{bmatrix}
=
\frac{1}{1200}
\begin{bmatrix}
-1050 \\
900 \\
-210
\end{bmatrix}.
\]
Simplifying:
\[
X =
\begin{bmatrix}
a \\ b \\ c
\end{bmatrix}
=
\begin{bmatrix}
\frac{7}{8} \\
\frac{3}{4} \\
\frac{1}{6}
\end{bmatrix}.
\]
Step 7: Back-substitute for \( x, y, z \).
Using \( a = \frac{1}{x}, \, b = \frac{1}{y}, \, c = \frac{1}{z} \), we find:
\[
x = 2, \quad y = 3, \quad z = 5.
\]
Final Answer:
\[
x = 2, \quad y = 3, \quad z = 5.
\]