Step 1: {Expand the matrix equation}
The given matrix \( A = \begin{bmatrix} \tan x & 1 \\ -1 & \tan x \end{bmatrix} \). The transpose is: \[ A' = \begin{bmatrix} \tan x & -1 \\ 1 & \tan x \end{bmatrix}. \] Adding \( A \) and \( A' \): \[ A + A' = \begin{bmatrix} \tan x & 1 \\ -1 & \tan x \end{bmatrix} + \begin{bmatrix} \tan x & -1 \\ 1 & \tan x \end{bmatrix} = \begin{bmatrix} 2\tan x & 0 \\ 0 & 2\tan x \end{bmatrix}. \] Step 2: {Compare with the given equation}
The given equation is: \[ A + A' = 2\sqrt{3}I, \] where \( I \) is the identity matrix. Thus: \[ \begin{bmatrix} 2\tan x & 0 \\ 0 & 2\tan x \end{bmatrix} = \begin{bmatrix} 2\sqrt{3} & 0 \\ 0 & 2\sqrt{3} \end{bmatrix}. \] Step 3: {Solve for \( \tan x \)}
Equating elements, we get: \[ 2\tan x = 2\sqrt{3} \quad \Rightarrow \quad \tan x = \sqrt{3}. \] Thus, \( x = \frac{\pi}{3} \) (in the interval \( \left[ 0, \frac{\pi}{2} \right] \)).
Conclusion: The value of \( x \) is \( \frac{\pi}{3} \).
State and elaborate, whether the following statements are true/false, with valid arguments
Under the Golden Revolution there was tremendous growth in horticulture, making India the world leader in this field.