Step 1: {Expand the matrix equation}
The given matrix \( A = \begin{bmatrix} \tan x & 1 \\ -1 & \tan x \end{bmatrix} \). The transpose is: \[ A' = \begin{bmatrix} \tan x & -1 \\ 1 & \tan x \end{bmatrix}. \] Adding \( A \) and \( A' \): \[ A + A' = \begin{bmatrix} \tan x & 1 \\ -1 & \tan x \end{bmatrix} + \begin{bmatrix} \tan x & -1 \\ 1 & \tan x \end{bmatrix} = \begin{bmatrix} 2\tan x & 0 \\ 0 & 2\tan x \end{bmatrix}. \] Step 2: {Compare with the given equation}
The given equation is: \[ A + A' = 2\sqrt{3}I, \] where \( I \) is the identity matrix. Thus: \[ \begin{bmatrix} 2\tan x & 0 \\ 0 & 2\tan x \end{bmatrix} = \begin{bmatrix} 2\sqrt{3} & 0 \\ 0 & 2\sqrt{3} \end{bmatrix}. \] Step 3: {Solve for \( \tan x \)}
Equating elements, we get: \[ 2\tan x = 2\sqrt{3} \quad \Rightarrow \quad \tan x = \sqrt{3}. \] Thus, \( x = \frac{\pi}{3} \) (in the interval \( \left[ 0, \frac{\pi}{2} \right] \)).
Conclusion: The value of \( x \) is \( \frac{\pi}{3} \).
Let $ A = \begin{bmatrix} 2 & 2 + p & 2 + p + q \\4 & 6 + 2p & 8 + 3p + 2q \\6 & 12 + 3p & 20 + 6p + 3q \end{bmatrix} $ If $ \text{det}(\text{adj}(\text{adj}(3A))) = 2^m \cdot 3^n, \, m, n \in \mathbb{N}, $ then $ m + n $ is equal to:
Consider the balanced transportation problem with three sources \( S_1, S_2, S_3 \), and four destinations \( D_1, D_2, D_3, D_4 \), for minimizing the total transportation cost whose cost matrix is as follows:
where \( \alpha, \lambda>0 \). If the associated cost to the starting basic feasible solution obtained by using the North-West corner rule is 290, then which of the following is/are correct?
Then, which one of the following is TRUE?
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: