Step 1: Check reflexivity. For reflexivity, \( (x, x) \) must belong to \( R \), but \( x \) cannot be 5 cm shorter than itself. Thus, \( R \) is not reflexive.
Step 2: Check symmetry. For symmetry, if \( (x, y) \in R \), then \( (y, x) \in R \). Since \( x \) is 5 cm shorter than \( y \), the reverse is not true, so \( R \) is not symmetric.
Step 3: Check transitivity. For transitivity, if \( (x, y) \in R \) and \( (y, z) \in R \), then \( (x, z) \in R \). However, \( x \) is 5 cm shorter than \( y \) and \( y \) is 5 cm shorter than \( z \), making \( x \) 10 cm shorter than \( z \). Thus, \( R \) is not transitive.
Final Answer: \[ \boxed{\text{Neither transitive, nor symmetric, nor reflexive}} \]
If the domain of the function $ f(x) = \log_7(1 - \log_4(x^2 - 9x + 18)) $ is $ (\alpha, \beta) \cup (\gamma, \delta) $, then $ \alpha + \beta + \gamma + \delta $ is equal to
Let $ A = \{-2, -1, 0, 1, 2, 3\} $. Let $ R $ be a relation on $ A $ defined by $ (x, y) \in R $ if and only if $ |x| \le |y| $. Let $ m $ be the number of reflexive elements in $ R $ and $ n $ be the minimum number of elements required to be added in $ R $ to make it reflexive and symmetric relations, respectively. Then $ l + m + n $ is equal to
Let A = $\{-3,-2,-1,0,1,2,3\}$. Let R be a relation on A defined by xRy if and only if $ 0 \le x^2 + 2y \le 4 $. Let $ l $ be the number of elements in R and m be the minimum number of elements required to be added in R to make it a reflexive relation. then $ l + m $ is equal to
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: