The positive value of the determinant of the matrix A, whose \(\text{Adj}(\text{Adj}(A)) = \begin{bmatrix} 14 & 28 & -14 \\ -14 & 14 & 28 \\ 28 & -14 & 14 \end{bmatrix}\) is ___.
The number of q∈ (0, 4π) for which the system of linear equations3(sin 3θ) x – y + z = 23(cos 2θ) x + 4y + 3z = 36x + 7y + 7z = 9has no solution, is
Let f and g be twice differentiable even functions on (–2, 2) such that\(ƒ(\frac{1}{4})=0, ƒ(\frac{1}{2})=0, ƒ(1) =1\) and \(g(\frac{3}{4}) = 0 , g(1)=2\).Then, the minimum number of solutions of f(x)g′′(x) + f′(x)g′(x) = 0 in (–2, 2) is equal to_____.
Let
\(a→=α\^{i}+3\^{j}−\^{k}, \overrightarrow{b}=3\^{i}−β\^{j}+4\^{k} and \overrightarrow{c}=\^{i}+2\^{j}−2\^{k }\)
where α,β∈R, be three vectors. If the projection of
\(\overrightarrow{a} on \overrightarrow{c} is \frac{10}{3} and \overrightarrow{b}×\overrightarrow{c}=−6\^{i}+10\^{j}+7\^{k}, \)
then the value of α+β is equal to
Let a circle C : (x – h)2 + (y – k)2 = r2, k > 0, touch the x-axis at (1, 0). If the line x + y = 0 intersects the circle C at P and Q such that the length of the chord PQ is 2, then the value of h + k + r is equal to ____.
The remainder on dividing 1 + 3 + 32 + 33 + … + 32021 by 50 ____ is