Equation of ellipse $\frac{x^{2}}{b^{2}} + \frac{y^{2}}{a^{2}} = 1 $ , where a > b
Given, $ \frac{x^{2}}{16} + \frac{y^{2}}{75} = 1 \Rightarrow b = 4 , a=5$
But $ e=\sqrt{1 - \frac{b^{2}}{a^{2}}} = \sqrt{1 -\frac{16}{25}} $
$ \Rightarrow e = \frac{3}{5} $
$ \therefore $ equation of directrix $ y = \pm \frac{a}{e} $
$ \therefore y = \pm \frac{5}{\frac{3}{5}} \Rightarrow 3y = \pm 25 $