Let $ABCD$ be a quadrilateral with area 18, with side AB parallel to the side $CD$ and $AB = 2 CD$.
Let $AD$ be perpendicular to $AB$ and $CD$. If a circle is drawn inside the quadrilateral $ABCD$ touching all the sides, then its radius is
$18=\frac{1}{2}(3\alpha)(2r)\Rightarrow\alpha r=6$ Line, $y=-\frac{2r}{\alpha}(x-2\alpha)$ is tangent to circle $(x-r)^2+(y-r)^2=r^2$$2\alpha =3r , \alpha r=6$ and $r=2$ Alternate Solution ${\frac{1}{2}}(x+2x)\times2r=18\: x r=6$....(i) In $\triangle$ AOB, $\tan\theta=\frac {x-r}{r}$ and in $\triangle$ DOC, $\tan(90^\circ-\theta)=\frac {2x-r}{r}$ $\therefore$$\frac {x-r}{r}=\frac {r}{2x-r}$ $\Rightarrow$ x(2x-3r)=0 $\Rightarrow$$x=\frac{3r}{2}$ From Eqs. (i) and (ii), we get $r = 2$