Let the slope of the tangent to a curve y = f(x) at (x, y) be given by 2 tanx(cosx – y). If the curve passes through the point (π/4, 0) then the value of
\(\int_{0}^{\frac{\pi}{2}} y \,dx\)
is equal to :
\((2-\sqrt2)+\frac{π}{\sqrt2}\)
\(2-\frac{π}{\sqrt2}\)
\((2+\sqrt2)+\frac{π}{\sqrt2}\)
\(2+\frac{π}{\sqrt2}\)
The correct answer is (B) : \(2-\frac{π}{\sqrt2}\)
\(\frac{dy}{dx}=2tanx(cosx−y)\)
\(⇒\frac{dy}{dx}+2tanxy=2sinx\)
\(I.F=e^{∫2tanxdx}=sec^2x\)
∴ Solution of D.E. will be
\(y(x)sec^2x=∫2sinxsec^2xdx\)
\(ysec^2x=2secx+c\)
∵ Curve passes through
\((\frac{π}{4},0)\)
\(∴c=−2\sqrt2\)
\(∴y=2cosx−2\sqrt2cos^2x\)
\(\therefore \int_{0}^{\frac{\pi}{2}} y \,dx = \int_{0}^{\frac{\pi}{2}} (2\cos x - 2\sqrt{2}\cos^2 x) \,dx\)
\(=2−2\sqrt2⋅\frac{π}{4}\)
\(=2−\frac{π}{\sqrt2}\)
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
m×n = -1