\(∵ \) Sum of all entries of matrix A must be prime p such that \(2<p<8\) then sum of entries may be 3, 5 or 7.
If sum is 3 then possible entries are \((0, 0, 0, 3), (0, 0, 1, 2)\) or \((0, 1, 1, 1).\)
\(∴\) Total number of matrices \(= 4+4+12=20\)
If sum of 5 then possible entries are
\((0, 0, 0, 5), (0, 0, 1, 4), (0, 0, 2, 3), (0, 1, 1, 3), (0, 1, 2, 2) \ and\ (1, 1, 1, 2).\)
\(∴\) Total number of matrices \(= 4+12+12+12+12+4=56\)
If sum is 7 then possible entries are
\((0, 0, 2, 5), (0, 0, 3, 4), (0, 1, 1, 5), (0, 3, 3, 1), (0, 2, 2, 3), (1, 1, 1, 4), (1, 2, 2, 2), (1, 1, 2, 3) \) and \((0, 1, 2, 4)\)
Total number of matrices with sum \(7=104\)
\(∴\) Total number of required matrices\(= 20+56+104=180\)
Let \[ f(x)=\int \frac{7x^{10}+9x^8}{(1+x^2+2x^9)^2}\,dx \] and $f(1)=\frac14$. Given that 
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.
