\(∵ \) Sum of all entries of matrix A must be prime p such that \(2<p<8\) then sum of entries may be 3, 5 or 7.
If sum is 3 then possible entries are \((0, 0, 0, 3), (0, 0, 1, 2)\) or \((0, 1, 1, 1).\)
\(∴\) Total number of matrices \(= 4+4+12=20\)
If sum of 5 then possible entries are
\((0, 0, 0, 5), (0, 0, 1, 4), (0, 0, 2, 3), (0, 1, 1, 3), (0, 1, 2, 2) \ and\ (1, 1, 1, 2).\)
\(∴\) Total number of matrices \(= 4+12+12+12+12+4=56\)
If sum is 7 then possible entries are
\((0, 0, 2, 5), (0, 0, 3, 4), (0, 1, 1, 5), (0, 3, 3, 1), (0, 2, 2, 3), (1, 1, 1, 4), (1, 2, 2, 2), (1, 1, 2, 3) \) and \((0, 1, 2, 4)\)
Total number of matrices with sum \(7=104\)
\(∴\) Total number of required matrices\(= 20+56+104=180\)
Let $ A = \begin{bmatrix} \alpha & -1 \\6 & \beta \end{bmatrix},\ \alpha > 0 $, such that $ \det(A) = 0 $ and $ \alpha + \beta = 1 $. If $ I $ denotes the $ 2 \times 2 $ identity matrix, then the matrix $ (1 + A)^5 $ is:
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to:
A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.