Question:

The area of the region 
\(\begin{array}{l} \left\{\left(x,y\right);\left|x-1\right|\leq y \leq \sqrt{5-x^2} \right\}\end{array}\)
is equal to

Updated On: Sep 24, 2024
  • \(\frac{5}{2}sin^{−1}⁡(\frac{3}{5})−\frac{1}{2}\)
  • \(\frac{5π}{4}−\frac{3}{2}\)
  • \(\frac{3π}{4}+\frac{3}{2}\)
  • \(\frac{5π}{4}−\frac{1}{2}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Area of the Region
\(\begin{array}{l} A=\displaystyle\int\limits_{-1}^1\left(\sqrt{5-x^2}-\left(1-x\right)\right)dx+\displaystyle\int\limits_{1}^2\left(\sqrt{5-x^2}-\left(x-1\right)\right)dx\end{array}\)
\(\begin{array}{l} \left.A=2\left(\frac{x}{2}\sqrt{5-x^2}+\frac{5}{2}\sin^{-1}\frac{x}{\sqrt{5}}\right)-2x\right|_0^1 \left.+\frac{x}{2}\sqrt{5-x^2}+\frac{5}{2}\sin^{-1}\frac{x}{\sqrt{5}}-\frac{x^2}{2}+x\right|_1^2\end{array}\)
\(\begin{array}{l} =\left(\frac{5\pi}{4}-\frac{1}{2}\right)\text{ sq. units} \end{array}\)
Was this answer helpful?
0
0

Concepts Used:

Area under Simple Curves

  • The area of the region bounded by the curve y = f (x), x-axis and the lines x = a and x = b (b > a) - given by the formula:
\[\text{Area}=\int_a^bydx=\int_a^bf(x)dx\]
  • The area of the region bounded by the curve x = φ (y), y-axis and the lines y = c, y = d - given by the formula:
\[\text{Area}=\int_c^dxdy=\int_c^d\phi(y)dy\]

Read More: Area under the curve formula