>
Mathematics
List of top Mathematics Questions
Consider the following statements
Statement-I:
A function \( f: A \rightarrow B \) is said to be one-one if and only if \[ f(x) = f(y) \Rightarrow x = y \]
Statement-II:
A relation \( f: A \rightarrow B \) is said to be a function if \[ x = y \Rightarrow f(x) \neq f(y) \]
Then which one of the following is true?
AP EAPCET - 2025
AP EAPCET
Mathematics
Functions
If
\( t_n = \dfrac{1}{n(n+2)} \), \( n \in \mathbb{N} \),
then which one of the following is true?
Assertion (A):
\[ t_1 + t_2 + \cdots + t_{2003} = \dfrac{2003}{3005} \]
Reason (R):
\[ t_n = \dfrac{1}{n(n+2)} = \dfrac{1}{2} \left( \dfrac{1}{n} - \dfrac{1}{n+2} \right) \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Matrices
The range of the real valued function \( f(x) = \cos^{-1
\left( \dfrac{3}{\sqrt{9x^2 - 12x + 22}} \right) \) is}
AP EAPCET - 2025
AP EAPCET
Mathematics
Functions
\( \int_{-1}^{4} \sqrt{\frac{4-x}{x+1}} \ dx = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Limits and Exponential Functions
The general solution of the differential equation \( \frac{dy}{dx} = \frac{x+y}{x-y} \) is
AP EAPCET - 2025
AP EAPCET
Mathematics
Differential Equations
\( \int_{0}^{\pi/4} \frac{\cos^2 x}{\cos^2 x + 4\sin^2 x} dx = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Integration
The general solution of the differential equation \( \frac{dy}{dx} + \frac{\sec x}{\cos x + \sin x}y = \frac{\cos x}{1+\tan x} \) is
AP EAPCET - 2025
AP EAPCET
Mathematics
Differential Equations
The differential equation of the family of circles passing through the origin and having centre on X-axis is
AP EAPCET - 2025
AP EAPCET
Mathematics
Differential Equations
\( \int_{5\pi}^{25\pi} |\sin 2x + \cos 2x| \ dx = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Integration
\( \int \sqrt{x^2+x+1} \ dx \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Integration
If \( \int \frac{\cos^3 x}{\sin^2 x + \sin^4 x} dx = c - \operatorname{cosec} x - f(x) \), then \( f\left(\frac{\pi}{2}\right) = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Exponential and Logarithmic Functions
\( \int \frac{13\cos 2x - 9\sin 2x}{3\cos 2x - 4\sin 2x} dx = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Integration
If \( k \in N \) then \( \lim_{n\to\infty} \left[ \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{kn} \right] = \)
(Note: The last term should be \( \frac{1}{n+ (k-1)n} = \frac{1}{kn} \) or sum up to \(n+(k-1)n\). The given form \(1/kn\) as the endpoint of the sum means sum from \(r=1\) to \((k-1)n\). The sum is usually \( \sum_{r=1}^{(k-1)n} \frac{1}{n+r} \). If the last term is \( \frac{1}{kn} \), it means \( n+r = kn \implies r = (k-1)n \). So it's \( \sum_{r=1}^{(k-1)n} \frac{1}{n+r} \).) Let's assume the sum goes up to \( \frac{1}{n+(k-1)n} = \frac{1}{kn} \). So the sum is \( \sum_{r=1}^{(k-1)n} \frac{1}{n+r} \). No, this seems to be \( \frac{1}{n+1} + \dots + \frac{1}{n+(kn-n)} \). The sum should be written as \( \sum_{i=1}^{(k-1)n} \frac{1}{n+i} \). The dots imply the denominator goes up. The last term is \( \frac{1}{kn} \). This means the sum is actually \( \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+(k-1)n} \). The number of terms is \( (k-1)n \).
AP EAPCET - 2025
AP EAPCET
Mathematics
Differentiation
\( \int \left( \sum_{r=0}^{\infty} \frac{x^r 2^r}{r!} \right) dx = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Integration
If the area of a right angled triangle with hypotenuse 5 is maximum, then its perimeter is
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry
\( \int \frac{dx}{12\cos x + 5\sin x} = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Integration
If \( y = \tan^{-1}\left(\frac{x}{1+2x^2}\right) + \tan^{-1}\left(\frac{x}{1+6x^2}\right) \), then \( \frac{dy}{dx} = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Differentiability
If \( \beta \) is an angle between the normals drawn to the curve \( x^2+3y^2=9 \) at the points \( (3\cos\theta, \sqrt{3}\sin\theta) \) and \( (-3\sin\theta, \sqrt{3}\cos\theta) \), \( \theta \in \left(0, \frac{\pi}{2}\right) \), then
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry
Which one of the following functions is monotonically increasing in its domain?
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry
If the tangent drawn at the point \( (x_1,y_1) \), \(x_1,y_1 \in N \) on the curve \( y = x^4 - 2x^3 + x^2 + 5x \) passes through origin, then \( x_1+y_1 = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry
\( \lim_{n\to\infty} \frac{1}{n^3} \sum_{k=1}^{n} k^2 x = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Limits and Exponential Functions
If the line of intersection of the planes \(2x+3y+z=1\) and \(x+3y+2z=2\) makes an angle \( \alpha \) with the positive x-axis, then \( \cos \alpha = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry
\([x]\) denotes the greatest integer less than or equal to x. If \(\{x\}=x-[x]\) and \( \lim_{x\to 0} \frac{\sin^{-1}(x+[x])}{2-\{x\}} = \theta \), then \( \sin\theta + \cos\theta = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Continuity
Let \( f: \mathbb{R} \to \mathbb{R} \) be defined by \[ f(x) = \begin{cases} a - \frac{\sin[x-1]}{x-1} & , \text{if } x>1
1 & , \text{if } x = 1
b - \frac{\sin([x-1] - [x-1]^3)}{([x-1]^2)} & , \text{if } x<1 \end{cases} \] where \([t]\) denotes the greatest integer less than or equal to t. If f is continuous at \(x=1\), then \(a+b=\)
AP EAPCET - 2025
AP EAPCET
Mathematics
Continuity
On a line with direction cosines l, m, n, \( A(x_1, y_1, z_1) \) is a fixed point. If \( B=(x_1+4kl, y_1+4km, z_1+4kn) \) and \( C=(x_1+kl, y_1+km, z_1+kn) \) (\(k>0\)) then the ratio in which the point B divides the line segment joining A and C is
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry
Prev
1
...
39
40
41
42
43
...
920
Next