>
Mathematics
List of top Mathematics Questions
$\int \frac{\log x}{(1+x)^2}dx = $
TS EAMCET - 2025
TS EAMCET
Mathematics
Integration
If the normal drawn at the point P on the curve $y^2 = x^2-x+1$ makes equal intercepts on the coordinate axes, then the equation of the tangent drawn to the curve at P is
TS EAMCET - 2025
TS EAMCET
Mathematics
Application of derivatives
If a balloon flying at an altitude of 30 m from an observer at a particular instant is moving horizontally at the rate of 1 m/s away from him, then the rate at which the balloon is moving away directly from the observer at the 40th second is (in m/s)
TS EAMCET - 2025
TS EAMCET
Mathematics
Application of derivatives
A real valued function
$f:[4, \infty) \to \mathbb{R}$ is defined as $f(x) = (x^2+x+1)^{(x^2-3x-4)}$, then f is
TS EAMCET - 2025
TS EAMCET
Mathematics
Application of derivatives
The approximate value of $\sqrt{6560}$ is
TS EAMCET - 2025
TS EAMCET
Mathematics
Application of derivatives
If a normal is drawn at a variable point P(x, y) on the curve $9x^2+16y^2-144=0$, then the maximum distance from the centre of the curve to the normal is
TS EAMCET - 2025
TS EAMCET
Mathematics
Conic sections
For $a\neq0$ and $b\neq0$, if the real valued function $f(x) = \frac{\sqrt[4]{625+4x}-5}{\sqrt[4]{625+5bx}-5}$ is continuous at $x=0$, then $f(0) =$
TS EAMCET - 2025
TS EAMCET
Mathematics
Limits
If $y=(1-x^2)\text{Tanh}^{-1}x$ then $\frac{d^2y}{dx^2}=$
TS EAMCET - 2025
TS EAMCET
Mathematics
Differentiation
If $f(x) = \log_{(x-1)^2}(x^2-3x+2)$, $x \in \mathbb{R}-[1,2]$ and $x\neq0$, then $f'(3)=$
TS EAMCET - 2025
TS EAMCET
Mathematics
Differentiation
The values of x at which the real valued function $f(x)=7|2x+1|-19|3x-5|$ is not differentiable is
TS EAMCET - 2025
TS EAMCET
Mathematics
Differentiation
If $y^3=x$ then the value of $\frac{dy}{dx}$ at $x=1$ is
TS EAMCET - 2025
TS EAMCET
Mathematics
Differentiation
If $\{x\}=x-[x]$ where $[x]$ is the greatest integer $\le x$ and $\lim_{x\to 0^+} \frac{\text{Cos}^{-1}(1-\{x\}^2)\text{Sin}^{-1}(1-\{x\})}{\{x\}-\{x\}^3} = \theta$, then $\tan\theta=$
TS EAMCET - 2025
TS EAMCET
Mathematics
Limits
If $\theta$ is the acute angle between the tangents drawn from the point (1,5) to the parabola $y^2 = 9x$ then
TS EAMCET - 2025
TS EAMCET
Mathematics
Conic sections
Let P be a point on the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$ and let the perpendicular drawn through P to the major axis meet its auxiliary circle at Q. If the normals drawn at P and Q to the ellipse and the auxiliary circle respectively meet in R, then the equation of the locus of R is
TS EAMCET - 2025
TS EAMCET
Mathematics
Conic sections
If m:n is the ratio in which the point $\left(\frac{8}{5}, \frac{1}{5}, \frac{8}{5}\right)$ divides the line segment joining the points (2,p,2) and (p,-2,p) where p is an integer then $\frac{3m+n}{3n}=$
TS EAMCET - 2025
TS EAMCET
Mathematics
Three Dimensional Geometry
If $(\alpha, \beta, \gamma)$ is the foot of the perpendicular drawn from a point $(-1,2,-1)$ to the line joining the points $(2,-1,1)$ and $(1,1,-2)$, then $\alpha+\beta+\gamma=$
TS EAMCET - 2025
TS EAMCET
Mathematics
Three Dimensional Geometry
If A(2,1,-1), B(6,-3,2), C(-3,12,4) are the vertices of a triangle ABC and the equation of the plane containing the triangle ABC is $53x+by+cz+d=0$, then $\frac{d}{b+c}=$
TS EAMCET - 2025
TS EAMCET
Mathematics
Three Dimensional Geometry
The midpoint of the chord of the ellipse $x^2+\frac{y^2}{4}=1$ formed on the line $y=x+1$ is
TS EAMCET - 2025
TS EAMCET
Mathematics
Conic sections
If the tangent drawn at the point $P(3\sqrt{2}, 4)$ on the hyperbola $\frac{x^2}{9}-\frac{y^2}{16}=1$ meets its directrix at $Q(\alpha, \beta)$ in the fourth quadrant then $\beta = $
TS EAMCET - 2025
TS EAMCET
Mathematics
Conic sections
If $m_1, m_2$ are the slopes of the tangents drawn through the point $(-1,-2)$ to the circle $(x-3)^2+(y-4)^2=4$, then $\sqrt{3}|m_1-m_2|=$
TS EAMCET - 2025
TS EAMCET
Mathematics
Coordinate Geometry
The radius of a circle $C_1$ is thrice the radius of another circle $C_2$ and the centres of $C_1$ and $C_2$ are (1,2) and (3,-2) respectively. If they cut each other orthogonally and the radius of the circle $C_1$ is 3r, then the equation of the circle with r as radius and (1,-2) as centre is
TS EAMCET - 2025
TS EAMCET
Mathematics
Coordinate Geometry
If the normals drawn at the points $P\left(\frac{3}{4}, \frac{3}{2}\right)$ and $Q(3,3)$ on the parabola $y^2 = 3x$ intersect again on $y^2=3x$ at R, then R =
TS EAMCET - 2025
TS EAMCET
Mathematics
Conic sections
If the centre $(\alpha, \beta)$ of a circle cutting the circles $x^2+y^2-2y-3=0$ and $x^2+y^2+4x+3=0$ orthogonally lies on the line $2x-3y+4=0$, then $2\alpha+\beta=$
TS EAMCET - 2025
TS EAMCET
Mathematics
Coordinate Geometry
A circle C touches the X-axis and makes an intercept of length 2 units on the Y-axis. If the centre of this circle lies on the line $y=x+1$, then a circle passing through the centre of the circle C is
TS EAMCET - 2025
TS EAMCET
Mathematics
Coordinate Geometry
A line meets the circle $x^2+y^2-4x-4y-8=0$ in two points A and B. If P(2,-2) is a point on the circle such that PA = PB = 2 then the equation of the line AB is
TS EAMCET - 2025
TS EAMCET
Mathematics
Coordinate Geometry
Prev
1
...
37
38
39
40
41
...
1066
Next