Step 1: Implicit differentiation.
We are given the equation \( x^3 + 2x^2 y - 3xy^2 + y^3 = 100 \). To find \( \frac{dy}{dx} \), we differentiate implicitly with respect to \( x \). Differentiating each term:
\[
\frac{d}{dx}(x^3) = 3x^2, \quad \frac{d}{dx}(2x^2 y) = 2x^2 \frac{dy}{dx} + 4xy
\]
\[
\frac{d}{dx}(-3xy^2) = -3 \left( y^2 + 2xy \frac{dy}{dx} \right), \quad \frac{d}{dx}(y^3) = 3y^2 \frac{dy}{dx}
\]
Step 2: Substituting into the equation.
Substitute the derivatives into the equation:
\[
3x^2 + \left( 2x^2 \frac{dy}{dx} + 4xy \right) - 3 \left( y^2 + 2xy \frac{dy}{dx} \right) + 3y^2 \frac{dy}{dx} = 0
\]
Step 3: Collecting terms involving \( \frac{dy}{dx} \).
Group the terms with \( \frac{dy}{dx} \) together:
\[
2x^2 \frac{dy}{dx} - 6xy \frac{dy}{dx} + 3y^2 \frac{dy}{dx} = -3x^2 - 4xy + 3y^2
\]
Factor out \( \frac{dy}{dx} \):
\[
\frac{dy}{dx} \left( 2x^2 - 6xy + 3y^2 \right) = -3x^2 - 4xy + 3y^2
\]
Step 4: Solving for \( \frac{dy}{dx} \).
Solving for \( \frac{dy}{dx} \):
\[
\frac{dy}{dx} = \frac{-3x^2 - 4xy + 3y^2}{2x^2 - 6xy + 3y^2}
\]
Step 5: Conclusion.
Thus, the derivative \( \frac{dy}{dx} \) is:
\[
\frac{dy}{dx} = \frac{-3x^2 - 4xy + 3y^2}{2x^2 - 6xy + 3y^2}
\]