Step 1: Formula for the area of a triangle using determinants.
The area of a triangle with vertices \( (x_1, y_1) \), \( (x_2, y_2) \), and \( (x_3, y_3) \) is given by the determinant formula:
\[
\text{Area} = \frac{1}{2} \left| \begin{vmatrix} x_1 & y_1 & 1
x_2 & y_2 & 1
x_3 & y_3 & 1 \end{vmatrix} \right|
\]
Substitute the coordinates of the points \( (-3, 6) \), \( (-4, 4) \), and \( (k, -2) \):
\[
\text{Area} = \frac{1}{2} \left| \begin{vmatrix} -3 & 6 & 1
-4 & 4 & 1
k & -2 & 1 \end{vmatrix} \right|
\]
Step 2: Calculating the determinant.
Now, calculate the determinant:
\[
\begin{vmatrix} -3 & 6 & 1
-4 & 4 & 1
k & -2 & 1 \end{vmatrix} = -3 \begin{vmatrix} 4 & 1
-2 & 1 \end{vmatrix} - 6 \begin{vmatrix} -4 & 1
k & 1 \end{vmatrix} + 1 \begin{vmatrix} -4 & 4
k & -2 \end{vmatrix}
\]
Simplifying each 2x2 determinant:
\[
\begin{vmatrix} 4 & 1
-2 & 1 \end{vmatrix} = 4(1) - 1(-2) = 4 + 2 = 6
\]
\[
\begin{vmatrix} -4 & 1
k & 1 \end{vmatrix} = -4(1) - 1(k) = -4 - k
\]
\[
\begin{vmatrix} -4 & 4
k & -2 \end{vmatrix} = -4(-2) - 4(k) = 8 - 4k
\]
Substitute these into the determinant formula:
\[
\text{Area} = \frac{1}{2} \left| -3(6) - 6(-4 - k) + 1(8 - 4k) \right|
\]
Simplify:
\[
\text{Area} = \frac{1}{2} \left| -18 + 24 + 6k + 8 - 4k \right|
\]
\[
= \frac{1}{2} \left| 14 + 2k \right|
\]
We are given that the area is 12 square units, so:
\[
\frac{1}{2} \left| 14 + 2k \right| = 12
\]
Multiply both sides by 2:
\[
\left| 14 + 2k \right| = 24
\]
This gives two cases:
\[
14 + 2k = 24 \quad \text{or} \quad 14 + 2k = -24
\]
Step 3: Solving for \( k \).
Solving \( 14 + 2k = 24 \):
\[
2k = 10 \quad \Rightarrow \quad k = 5
\]
Solving \( 14 + 2k = -24 \):
\[
2k = -38 \quad \Rightarrow \quad k = -19
\]
Thus, the possible values of \( k \) are 5 and -19.
Step 4: Conclusion.
The value of \( k \) is either 5 or -19.