>
Mathematics
List of top Mathematics Questions
Solve the L.P.P graphically
Maximize \( Z = 7x + 8y \) subject to constraints
\[ x + y \geq 50, \quad x + 2y \leq 100, \quad x - y \geq 10, \quad x \geq 0, \quad y \geq 0 \]
PSEB XII - 2025
PSEB XII
Mathematics
Calculus
Evaluate
\[ \int \frac{dx}{x^2 - 8x + 17} \]
PSEB XII - 2025
PSEB XII
Mathematics
Calculus
\( \tan^{-1} \sqrt{3} - \sec^{-1}(-2) \) is equal to \( \frac{\pi}{3} \).
PSEB XII - 2025
PSEB XII
Mathematics
Inverse Trigonometric Functions
Evaluate \( \int_{-1}^{1} \log \left( \frac{2 + x}{2 - x} \right) \, dx \)
PSEB XII - 2025
PSEB XII
Mathematics
Calculus
Evaluate \( \int e^x \left( \cot x + \log \sin x \right) \, dx \)
PSEB XII - 2025
PSEB XII
Mathematics
Calculus
Find the intervals in which the function \( f(x) = 2x^3 - 15x^2 + 36x + 1 \) is strictly increasing or decreasing?
PSEB XII - 2025
PSEB XII
Mathematics
Calculus
\( \int dx = x^2 + C \)
PSEB XII - 2025
PSEB XII
Mathematics
Calculus
Objective function of a L.P.P is a function to be optimized.
PSEB XII - 2025
PSEB XII
Mathematics
Linear Programming
\( \int_1^1 (x^{19} + x^{21}) \, dx = 0 \)
PSEB XII - 2025
PSEB XII
Mathematics
Calculus
The function \( y = \sin x \) is increasing in \( \left[ 0, \frac{\pi}{2} \right] \).
PSEB XII - 2025
PSEB XII
Mathematics
Inverse Trigonometric Functions
The value of \( \cos^{-1} \left( \cos \frac{2\pi}{3} \right) \) is equal to:
PSEB XII - 2025
PSEB XII
Mathematics
Inverse Trigonometric Functions
\( \int_0^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \, dx \) equals:
PSEB XII - 2025
PSEB XII
Mathematics
Calculus
\( \int e^x(f(x) + f'(x)) \, dx \) equals:
PSEB XII - 2025
PSEB XII
Mathematics
Calculus
\( \frac{d}{dx} \left( \cos^{-1}x \right) \) is:
PSEB XII - 2025
PSEB XII
Mathematics
Calculus
The rate of change of the area of a circle with respect to its radius \( r \) at \( r = 6 \, \text{cm} \) is:
PSEB XII - 2025
PSEB XII
Mathematics
Calculus
If \( AB = C \) where \( B \) and \( C \) are of order \( 3 \times 5 \), then the order of \( A \) is:
PSEB XII - 2025
PSEB XII
Mathematics
Matrices
Maximum value of \( Z = 3x + y \) for the constraints \( x + y \leq 4, x \geq 0, y \geq 0 \) is:
PSEB XII - 2025
PSEB XII
Mathematics
Linear Programming
If \( A \) is an invertible matrix, then \( \det(A^{-1}) \) is:
PSEB XII - 2025
PSEB XII
Mathematics
Matrices
If \( y = e^x \), then \( \frac{d^2y}{dx^2} \) is:
PSEB XII - 2025
PSEB XII
Mathematics
Differentiation
If \( A = \text{diag}(d_1, d_2, \ldots, d_n) \), then \( |A| \) is:
PSEB XII - 2025
PSEB XII
Mathematics
Determinants
If \( A \) is a non-singular matrix of order 3 and \( |A| = 2 \), then \( |\text{adj}(A)| \) equals:
PSEB XII - 2025
PSEB XII
Mathematics
Matrices
Let \( A \) be a square matrix of order 3x3. Then \( |2A| \) is equal to:
PSEB XII - 2025
PSEB XII
Mathematics
Determinants
The value of \( \int_0^{\pi/2} \sin^2 x \cos^3 x \, dx \) is:
PSEB XII - 2025
PSEB XII
Mathematics
Calculus
Find the angle between the lines:
\[ \mathbf{r_1} = 3 \hat{i} + 8 \hat{j} + 3 \hat{k} + \mu (\hat{i} + 2 \hat{j} - \hat{k}), \quad \mathbf{r_2} = -3 \hat{i} + 9 \hat{j} - \hat{k} + \lambda (5 \hat{i} + 3 \hat{j} + 4 \hat{k}) \]
PSEB XII - 2025
PSEB XII
Mathematics
Geometry
Find the shortest distance between the following pairs of lines:
\[ \mathbf{r_1} = \hat{i} - 4 \hat{j} + 5 \hat{k} + \mu(5 \hat{i} + 9 \hat{j} + \hat{k}), \quad \mathbf{r_2} = 2 \hat{i} + 8 \hat{j} - 6 \hat{k} + \lambda(3 \hat{i} - 2 \hat{j} + \hat{k}) \]
PSEB XII - 2025
PSEB XII
Mathematics
Geometry
Prev
1
...
38
39
40
41
42
...
1168
Next