We are tasked with evaluating the expression:
\[
\cos^{-1} \left( \cos \frac{35\pi}{18} \right) - \sin^{-1} \left( \sin \frac{35\pi}{18} \right)
\]
First, let's simplify each part individually.
Step 1: Simplifying \( \cos^{-1} \left( \cos \frac{35\pi}{18} \right) \)
The principal value of the inverse cosine function, \( \cos^{-1} x \), lies between \( 0 \) and \( \pi \). Since \( \frac{35\pi}{18} \) is greater than \( \pi \), we need to find an equivalent angle within the range \( [0, \pi] \) by subtracting multiples of \( 2\pi \).
\[
\frac{35\pi}{18} - 2\pi = \frac{35\pi}{18} - \frac{36\pi}{18} = -\frac{\pi}{18}
\]
Now, since \( \cos^{-1} (\cos \theta) = \theta \) for \( \theta \in [0, \pi] \), we have:
\[
\cos^{-1} \left( \cos \frac{35\pi}{18} \right) = \cos^{-1} \left( \cos \left( -\frac{\pi}{18} \right) \right) = \frac{\pi}{18}
\]
Step 2: Simplifying \( \sin^{-1} \left( \sin \frac{35\pi}{18} \right) \)
The principal value of the inverse sine function, \( \sin^{-1} x \), lies between \( -\frac{\pi}{2} \) and \( \frac{\pi}{2} \). Since \( \frac{35\pi}{18} \) is greater than \( \frac{\pi}{2} \), we again find an equivalent angle within the range \( [-\frac{\pi}{2}, \frac{\pi}{2}] \) by subtracting multiples of \( 2\pi \).
\[
\frac{35\pi}{18} - 2\pi = -\frac{\pi}{18}
\]
Now, since \( \sin^{-1} (\sin \theta) = \theta \) for \( \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \), we have:
\[
\sin^{-1} \left( \sin \frac{35\pi}{18} \right) = \sin^{-1} \left( \sin \left( -\frac{\pi}{18} \right) \right) = -\frac{\pi}{18}
\]
Step 3: Subtracting the Results
Now, we subtract the two results:
\[
\cos^{-1} \left( \cos \frac{35\pi}{18} \right) - \sin^{-1} \left( \sin \frac{35\pi}{18} \right) = \frac{\pi}{18} - \left( -\frac{\pi}{18} \right) = \frac{\pi}{9}
\]
Thus, the value of the given expression is \( \frac{\pi}{9} \).