The line \(y = 5x + 7\) is perpendicular to the line joining the points \((2, 12)\) and \((12, k)\). Then the value of \(k\) is equal to:
\[ \int \frac{4x \cos \left( \sqrt{4x^2 + 7} \right)}{\sqrt{4x^2 + 7}} \, dx \]
Let \( f(x) = 2 - 7 \sin{\left( \frac{2x}{7} \right)} \). Then the maximum value of \( f(x) \) is:
The value of \( x \) that satisfies the equation:
\[ \begin{vmatrix} x & 1 & 1 \\ 2 & 2 & 0 \\ 1 & 0 & -2 \end{vmatrix} = 6 \]
The critical points of the function \( f(x) = (x-3)^3(x+2)^2 \) are:
If \( 0 \leq \alpha \leq \frac{\pi}{2} \) and \(\sin \left(\alpha - \frac{\pi}{12}\right) = \frac{1}{2}\), then \(\alpha\) is equal to:
Let \[ A = \begin{pmatrix} 3 & -2 & 1 \\ -1 & 3 & -1 \end{pmatrix} \] and \[ B = \begin{pmatrix} 1 \\ \alpha \\ -1 \end{pmatrix}. \] If \[ AB = \begin{pmatrix} -2 \\ 6 \end{pmatrix}, \] then the value of \( \alpha \) is equal to:
Let \( f(x) = \begin{cases} x^2 - \alpha, & \text{if } x < 1 \\ \beta x - 3, & \text{if } x \geq 1 \end{cases} \). If \( f \) is continuous at \( x = 1 \), then the value of \( \alpha + \beta \) is:
The vectors \(\vec{a} = 4\mathbf{i} - 3\mathbf{j} - \mathbf{k}\) and \(\vec{b} = 3\mathbf{i} + 2\mathbf{j} + \lambda\mathbf{k}\) are perpendicular to each other. Then the value of \(\lambda\) is equal to:
The value of the limit \(\lim_{x \to 0} \frac{(2 + \cos 3x) \sin^2 x}{x \tan(2x)}\) is equal to:
The point of intersection of the lines \(\frac{x-3}{2} = \frac{y-2}{2} = \frac{z-6}{1}\) and \(\frac{x-2}{3} = \frac{y-4}{2} = \frac{z-1}{3}\) is: