We are given the expression \( \sin \left( 2 \sin^{-1} x + \cos^{-1} x \right) \), and we need to simplify it. Let \( \theta = \sin^{-1} x \).
Then \( \sin \theta = x \), and the angle \( \theta \) lies within the range \( \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] \). Also, recall that: \[ \cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x = \frac{\pi}{2} - \theta \] Now, we can rewrite the expression as: \[ \sin \left( 2 \theta + \left( \frac{\pi}{2} - \theta \right) \right) \] This simplifies to: \[ \sin \left( \theta + \frac{\pi}{2} \right) \] Using the trigonometric identity \( \sin \left( \theta + \frac{\pi}{2} \right) = \cos \theta \), we have: \[ \sin \left( 2 \sin^{-1} x + \cos^{-1} x \right) = \cos \theta \] Since \( \sin \theta = x \), we use the Pythagorean identity \( \cos^2 \theta = 1 - \sin^2 \theta \) to find: \[ \cos \theta = \sqrt{1 - x^2} \] Thus, the value of \( \sin \left( 2 \sin^{-1} x + \cos^{-1} x \right) \) is \( \sqrt{1 - x^2} \).
Thus, the correct answer is option (A), \( \sqrt{1 - x^2} \).
\[ f(x) = \begin{cases} x\left( \frac{\pi}{2} + x \right), & \text{if } x \geq 0 \\ x\left( \frac{\pi}{2} - x \right), & \text{if } x < 0 \end{cases} \]
Then \( f'(-4) \) is equal to:If \( f'(x) = 4x\cos^2(x) \sin\left(\frac{x}{4}\right) \), then \( \lim_{x \to 0} \frac{f(\pi + x) - f(\pi)}{x} \) is equal to:
Let \( f(x) = x \sin(x^4) \). Then \( f'(x) \) at \( x = \sqrt[4]{\pi} \) is equal to:
For the reaction:
\[ 2A + B \rightarrow 2C + D \]
The following kinetic data were obtained for three different experiments performed at the same temperature:
\[ \begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]_0 \, (\text{M}) & [B]_0 \, (\text{M}) & \text{Initial rate} \, (\text{M/s}) \\ \hline I & 0.10 & 0.10 & 0.10 \\ II & 0.20 & 0.10 & 0.40 \\ III & 0.20 & 0.20 & 0.40 \\ \hline \end{array} \]
The total order and order in [B] for the reaction are respectively: