Let $\vec{a}$ and $\vec{c}$ be unit vectors such that the angle between them is $\cos^{-1} \left( \frac{1}{4} \right)$. If $\vec{b} = 2\vec{c} + \lambda \vec{a}$. Where $\lambda > 0$ and $|\vec{b}| = 4$, then $\lambda$ is equal to:
\( \text{A tower subtends angles a, 2a, and 3a respectively at points A, B, and C, which are lying on a horizontal line through the foot of the tower. Then }\) \( \frac{AB}{BC} \) \(\text{ is equal to:}\)
The length of the projection of \( \mathbf{a} = 2\hat{i} + 3\hat{j} + \hat{k} \) \(\text{ on }\) \( \mathbf{b} = -2\hat{i} + \hat{j} + 2\hat{k} \) \(\text{ is equal to:}\)
If $\vec{a}$ and $\vec{b}$ are two vectors such that $|\vec{a}| = 3$, $|\vec{b}| = 4$ and $|\vec{a} + \vec{b}| = 1$, then the value of $|\vec{a} \times \vec{b}|$ is:
Let \( A = (1, 2, 3, \dots, 20) \). Let \( R \subseteq A \times A \) such that \( R = \{(x, y) : y = 2x - 7 \} \). Then the number of elements in \( R \) is equal to:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Draw a rough sketch for the curve $y = 2 + |x + 1|$. Using integration, find the area of the region bounded by the curve $y = 2 + |x + 1|$, $x = -4$, $x = 3$, and $y = 0$.