Solve the following LPP graphically: Maximize: \[ Z = 2x + 3y \] Subject to: \[ \begin{aligned} x + 4y &\leq 8 \quad \text{(1)} \\ 2x + 3y &\leq 12 \quad \text{(2)} \\ 3x + y &\leq 9 \quad \text{(3)} \\ x &\geq 0,\quad y \geq 0 \quad \text{(non-negativity constraints)} \end{aligned} \]
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
If \[ A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}, \] find \( A^{-1} \).
Using \( A^{-1} \), solve the following system of equations:
\[ \begin{aligned} 2x - 3y + 5z &= 11 \quad \text{(1)} \\ 3x + 2y - 4z &= -5 \quad \text{(2)} \\ x + y - 2z &= -3 \quad \text{(3)} \end{aligned} \]
From one face of a solid cube of side 14 cm, the largest possible cone is carved out. Find the volume and surface area of the remaining solid.Use $\pi = \dfrac{22}{7}, \sqrt{5} = 2.2$