Step 1: Find the cross product \( \mathbf{b} \times \mathbf{c} \).
\[ \mathbf{b} \times \mathbf{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -1 \\ 3 & 1 & \lambda \end{vmatrix} \] Expanding the determinant: \[ \mathbf{b} \times \mathbf{c} = \hat{i} \left( 2\lambda - (-1) \right) - \hat{j} \left( 1\lambda - (-3) \right) + \hat{k} \left( 1 - 6 \right) \] \[ \mathbf{b} \times \mathbf{c} = \hat{i} (2\lambda + 1) - \hat{j} (\lambda + 3) + \hat{k} (-5) \] Thus, the cross product is: \[ \mathbf{b} \times \mathbf{c} = (2\lambda + 1)\hat{i} - (\lambda + 3)\hat{j} - 5\hat{k} \]
Step 2: Find the dot product \( \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \).
\[ \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (e\hat{i} + 3\hat{j} + 4\hat{k}) \cdot ((2\lambda + 1)\hat{i} - (\lambda + 3)\hat{j} - 5\hat{k}) \] \[ \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = e(2\lambda + 1) + 3(-\lambda - 3) + 4(-5) \] \[ \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = e(2\lambda + 1) - 3(\lambda + 3) - 20 \] \[ = e(2\lambda + 1) - 3\lambda - 9 - 20 \] \[ = e(2\lambda + 1) - 3\lambda - 29 \]
Step 3: Solve for \( \lambda \).
We are given that the volume is 5, so: \[ |e(2\lambda + 1) - 3\lambda - 29| = 5 \] By solving this equation, we can find \( \lambda = 2 \). Thus, the value of \( \lambda \) is \( 2 \).
If $\vec{a}$ and $\vec{b}$ are two vectors such that $|\vec{a}| = 3$, $|\vec{b}| = 4$ and $|\vec{a} + \vec{b}| = 1$, then the value of $|\vec{a} \times \vec{b}|$ is:
If \( \mathbf{a} = \hat{i} + \hat{j} + \hat{k}, \, \mathbf{b} = 2\hat{i} - \hat{j} + 3\hat{k}, \, \mathbf{c} = \hat{i} - 2\hat{j} + \hat{k} \), \(\text{ then a vector of magnitude }\) \( \sqrt{22} \) \(\text{ which is parallel to }\) \( 2\mathbf{a} - \mathbf{b} + \mathbf{c} \) is:
Let $\vec{a}$ and $\vec{c}$ be unit vectors such that the angle between them is $\cos^{-1} \left( \frac{1}{4} \right)$. If $\vec{b} = 2\vec{c} + \lambda \vec{a}$. Where $\lambda > 0$ and $|\vec{b}| = 4$, then $\lambda$ is equal to:
The length of the projection of \( \mathbf{a} = 2\hat{i} + 3\hat{j} + \hat{k} \) \(\text{ on }\) \( \mathbf{b} = -2\hat{i} + \hat{j} + 2\hat{k} \) \(\text{ is equal to:}\)
If $\vec{a}$, $\vec{b}$ and $\vec{c}$ are three vectors such that $\vec{a} \times \vec{b} = \vec{c}$, $\vec{a} \cdot \vec{c} = 2$ and $\vec{b} \cdot \vec{c} = 1$. If $|\vec{b}| = 1$, then the value of $|\vec{a}|$ is:
A remote island has a unique social structure. Individuals are either "Truth-tellers" (who always speak the truth) or "Tricksters" (who always lie). You encounter three inhabitants: X, Y, and Z.
X says: "Y is a Trickster"
Y says: "Exactly one of us is a Truth-teller."
What can you definitively conclude about Z?
Consider the following statements followed by two conclusions.
Statements: 1. Some men are great. 2. Some men are wise.
Conclusions: 1. Men are either great or wise. 2. Some men are neither great nor wise. Choose the correct option: