>
Mathematics
List of top Mathematics Questions
A line passes through the origin and makes equal angles with the positive coordinate axes. It intersects the lines $ L_1 : 2x + y + 6 = 0 $ and $ L_2 : 4x + 2y - p = 0 $, $ p>0 $, at the points A and B, respectively. If $ AB = \frac{9}{\sqrt{2}} $ and the foot of the perpendicular from the point A on the line $ L_2 $ is M, then $ \frac{AM}{BM} $ is equal to
JEE Main - 2025
JEE Main
Mathematics
Coordinate Geometry
Let $ a_1, a_2, a_3, ... $ be a G.P. of increasing positive numbers. If $ a_3 a_5 = 729 $ and $ a_2 + a_4 = \frac{111}{4} $, then $ 24(a_1 + a_2 + a_3) $ is equal to
JEE Main - 2025
JEE Main
Mathematics
Sequences and Series
If the domain of the function $ f(x) = \log_e \left( \frac{2x-3}{5+4x} \right) + \sin^{-1} \left( \frac{4+3x}{2-x} \right) $ is $ [\alpha, \beta] $, then $ \alpha^2 + 4\beta $ is equal to
JEE Main - 2025
JEE Main
Mathematics
Functions
Let g be a differentiable function such that $ \int_0^x g(t) dt = x - \int_0^x tg(t) dt $, $ x \ge 0 $ and let $ y = y(x) $ satisfy the differential equation $ \frac{dy}{dx} - y \tan x = 2(x+1) \sec x g(x) $, $ x \in \left[ 0, \frac{\pi}{2} \right) $. If $ y(0) = 0 $, then $ y\left( \frac{\pi}{3} \right) $ is equal to
JEE Main - 2025
JEE Main
Mathematics
Differential equations
If $ \sum_{r=1}^{9} \left( \frac{r+3}{2^r} \right) \cdot {^9C_r} = \alpha \left( \frac{3}{2} \right)^9 - \beta $, $ \alpha, \beta \in \mathbb{N} $, then $ (\alpha + \beta)^2 $ is equal to
JEE Main - 2025
JEE Main
Mathematics
Binomial theorem
The number of solutions of the equation $ 2x + 3\tan x = \pi $, $ x \in [-2\pi, 2\pi] - \left\{ \pm \frac{\pi}{2}, \pm \frac{3\pi}{2} \right\} $ is
JEE Main - 2025
JEE Main
Mathematics
Trigonometry
Let $ \alpha $ and $ \beta $ be the roots of $ x^2 + \sqrt{3}x - 16 = 0 $, and $ \gamma $ and $ \delta $ be the roots of $ x^2 + 3x - 1 = 0 $. If $ P_n = \alpha^n + \beta^n $ and $ Q_n = \gamma^n + \delta^n $, then $ \frac{P_{25} + \sqrt{3}P_{24}}{2P_{23}} + \frac{Q_{25} - Q_{23}}{Q_{24}} \text{ is equal to} $
JEE Main - 2025
JEE Main
Mathematics
Quadratic Equations
Let $ A $ be a matrix of order $ 3 \times 3 $ and $ |A| = 5 $. If
$ |2 \, \text{adj}(3A \, \text{adj}(2A))| = 2^{\alpha} \cdot 3^{\beta} \cdot 5^{\gamma}, \quad \alpha, \beta, \gamma \in \mathbb{N} $
then $ \alpha + \beta + \gamma $ is equal to
JEE Main - 2025
JEE Main
Mathematics
Matrices
A line passing through the point P$(\sqrt{5}, \sqrt{5})$ intersects the ellipse $ \frac{x^2}{36} + \frac{y^2}{25} = 1 $ at A and B such that (PA).(PB) is maximum. Then 5(PA$^2$ + PB$^2$) is equal to :
JEE Main - 2025
JEE Main
Mathematics
Coordinate Geometry
The number of points of discontinuity of the function
$ f(x) = \left\lfloor \frac{x^2}{2} \right\rfloor - \left\lfloor \sqrt{x} \right\rfloor, \quad x \in [0, 4], $
where $ \left\lfloor \cdot \right\rfloor $ denotes the greatest integer function, is:
JEE Main - 2025
JEE Main
Mathematics
Functions
Let $ ABC $ be the triangle such that the equations of lines $ AB $ and $ AC $ are:
$ 3y - x = 2 \quad \text{and} \quad x + y = 2, $
respectively, and the points $ B $ and $ C $ lie on the x-axis. If $ P $ is the orthocentre of the triangle $ ABC $, then the area of the triangle $ PBC $ is equal to:
JEE Main - 2025
JEE Main
Mathematics
Circles
Let $ x_1, x_2, x_3, x_4 $ be in a geometric progression. If 2, 7, 9, 5 are subtracted respectively from $ x_1, x_2, x_3, x_4 $, then the resulting numbers are in an arithmetic progression. Then the value of $ \frac{1}{24} (x_1 x_2 x_3 x_4) $ is:
JEE Main - 2025
JEE Main
Mathematics
Sequences and Series
From a group of 7 batsmen and 6 bowlers, 10 players are to be chosen for a team, which should include at least 4 batsmen and at least 4 bowlers. One batsman and one bowler who are captain and vice-captain respectively of the team should be included. Then the total number of ways such a selection can be made, is:
JEE Main - 2025
JEE Main
Mathematics
Combinatorics
The integral
$ \int_0^\pi \frac{(x + 3) \sin x}{1 + 3 \cos^2 x} \, dx $
is equal to:
JEE Main - 2025
JEE Main
Mathematics
Integration
Let $ C_1 $ be the circle in the third quadrant of radius 3, that touches both coordinate axes. Let $ C_2 $ be the circle with center $ (1, 3) $ that touches $ C_1 $ externally at the point $ (\alpha, \beta) $. If $ (\beta - \alpha)^2 = \frac{m}{n} $, and $ \gcd(m, n) = 1 $, then $ m + n $ is equal to:
JEE Main - 2025
JEE Main
Mathematics
Circles
The remainder when $ \left( (64)^{64} \right)^{64} $ is divided by 7 is equal to:
JEE Main - 2025
JEE Main
Mathematics
Number Systems
Let $ x = -1 $ and $ x = 2 $ be the critical points of the function $ f(x) = x^3 + ax^2 + b \log|x| + 1 $, where $ x \neq 0 $. Let $ m $ and $ M $ be the absolute minimum and maximum values of $ f $ in the interval $ \left[-2, -\frac{1}{2}\right] $. Then, $ |M + m| $ is equal to:
JEE Main - 2025
JEE Main
Mathematics
Calculus
Solve for \( x \) in the equation \( \frac{1}{x} + \frac{1}{x+2} = \frac{5}{6} \).
VITEEE - 2025
VITEEE
Mathematics
Quadratic Equations
If \( \log_2 x = 5 \), what is the value of \( x \)?
MHT CET - 2025
MHT CET
Mathematics
Exponential and Logarithmic Functions
A die is rolled once. What is the probability of rolling a number greater than 4?
MHT CET - 2025
MHT CET
Mathematics
Probability
Find the value of \( x \) in the equation \( 4(x - 2) = 3(x + 5) \).
VITEEE - 2025
VITEEE
Mathematics
Linear Equations
If the roots of the quadratic equation \( x^2 - 5x + 6 = 0 \) are \( p \) and \( q \), then what is the value of \( p + q \)?
MHT CET - 2025
MHT CET
Mathematics
Algebra of Complex Numbers
Given that:
\[ x = a \sin(2t) (1 + \cos(2t)), \quad y = a \cos(2t) (1 - \cos(2t)) \]
Find
\(\frac{dy}{dx}\).
MHT CET - 2025
MHT CET
Mathematics
Continuity and differentiability
The remainder when \( 64^{64} \) is divided by 7 is equal to:
JEE Main - 2025
JEE Main
Mathematics
Arithmetic Progression
Find the solution of the quadratic equation \( 2x^2 - 3x - 5 = 0 \).
VITEEE - 2025
VITEEE
Mathematics
Quadratic Equations
Prev
1
...
108
109
110
111
112
...
924
Next