Step 1: Recall the formula for the determinant of a 2x2 matrix
For a 2x2 matrix \( \begin{vmatrix} a & b \\ c & d \end{vmatrix} \), the determinant is given by:
\[
\text{determinant} = ad - bc
\]
Step 2: Apply the formula to the given matrix
For the matrix \( \begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} \), we have:
- \( a = 2 \),
- \( b = 3 \),
- \( c = 4 \),
- \( d = 5 \).
Now, substitute these values into the determinant formula:
\[
\text{determinant} = (2)(5) - (3)(4) = 10 - 12 = -2
\]
Answer: Therefore, the value of the determinant is \( -2 \). So, the correct answer is option (4).