Step 1: Use the formula for the area of a triangle with given vertices
The formula for the area of a triangle with vertices \( A(x_1, y_1) \), \( B(x_2, y_2) \), and \( C(x_3, y_3) \) is:
\[
\text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right|
\]
For the given points:
- \( A(2, 3) \), so \( x_1 = 2 \) and \( y_1 = 3 \),
- \( B(5, 11) \), so \( x_2 = 5 \) and \( y_2 = 11 \),
- \( C(8, 7) \), so \( x_3 = 8 \) and \( y_3 = 7 \).
Step 2: Substitute the values into the formula
\[
\text{Area} = \frac{1}{2} \left| 2(11 - 7) + 5(7 - 3) + 8(3 - 11) \right|
\]
\[
= \frac{1}{2} \left| 2 \times 4 + 5 \times 4 + 8 \times (-8) \right|
\]
\[
= \frac{1}{2} \left| 8 + 20 - 64 \right|
\]
\[
= \frac{1}{2} \left| -36 \right|
\]
\[
= \frac{1}{2} \times 36 = 18
\]
Answer: Therefore, the area of the triangle is 18 square units. So, the correct answer is option (2).